mirror of https://github.com/coqui-ai/TTS.git
224 lines
7.4 KiB
Python
224 lines
7.4 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
import os
|
|
import sys
|
|
import time
|
|
import traceback
|
|
|
|
import torch
|
|
from torch.utils.data import DataLoader
|
|
|
|
from TTS.speaker_encoder.dataset import SpeakerEncoderDataset
|
|
from TTS.speaker_encoder.losses import AngleProtoLoss, GE2ELoss, SoftmaxAngleProtoLoss
|
|
from TTS.speaker_encoder.utils.generic_utils import save_best_model, setup_model
|
|
from TTS.speaker_encoder.utils.visual import plot_embeddings
|
|
from TTS.trainer import init_training
|
|
from TTS.tts.datasets import load_meta_data
|
|
from TTS.utils.audio import AudioProcessor
|
|
from TTS.utils.generic_utils import count_parameters, remove_experiment_folder, set_init_dict
|
|
from TTS.utils.radam import RAdam
|
|
from TTS.utils.training import NoamLR, check_update
|
|
|
|
torch.backends.cudnn.enabled = True
|
|
torch.backends.cudnn.benchmark = True
|
|
torch.manual_seed(54321)
|
|
use_cuda = torch.cuda.is_available()
|
|
num_gpus = torch.cuda.device_count()
|
|
print(" > Using CUDA: ", use_cuda)
|
|
print(" > Number of GPUs: ", num_gpus)
|
|
|
|
|
|
def setup_loader(ap: AudioProcessor, is_val: bool = False, verbose: bool = False):
|
|
if is_val:
|
|
loader = None
|
|
else:
|
|
dataset = SpeakerEncoderDataset(
|
|
ap,
|
|
meta_data_eval if is_val else meta_data_train,
|
|
voice_len=c.voice_len,
|
|
num_utter_per_speaker=c.num_utters_per_speaker,
|
|
num_speakers_in_batch=c.num_speakers_in_batch,
|
|
skip_speakers=c.skip_speakers,
|
|
storage_size=c.storage["storage_size"],
|
|
sample_from_storage_p=c.storage["sample_from_storage_p"],
|
|
verbose=verbose,
|
|
augmentation_config=c.audio_augmentation,
|
|
)
|
|
|
|
# sampler = DistributedSampler(dataset) if num_gpus > 1 else None
|
|
loader = DataLoader(
|
|
dataset,
|
|
batch_size=c.num_speakers_in_batch,
|
|
shuffle=False,
|
|
num_workers=c.num_loader_workers,
|
|
collate_fn=dataset.collate_fn,
|
|
)
|
|
return loader, dataset.get_num_speakers()
|
|
|
|
|
|
def train(model, optimizer, scheduler, criterion, data_loader, global_step):
|
|
model.train()
|
|
epoch_time = 0
|
|
best_loss = float("inf")
|
|
avg_loss = 0
|
|
avg_loss_all = 0
|
|
avg_loader_time = 0
|
|
end_time = time.time()
|
|
|
|
for _, data in enumerate(data_loader):
|
|
start_time = time.time()
|
|
|
|
# setup input data
|
|
inputs, labels = data
|
|
loader_time = time.time() - end_time
|
|
global_step += 1
|
|
|
|
# setup lr
|
|
if c.lr_decay:
|
|
scheduler.step()
|
|
optimizer.zero_grad()
|
|
|
|
# dispatch data to GPU
|
|
if use_cuda:
|
|
inputs = inputs.cuda(non_blocking=True)
|
|
labels = labels.cuda(non_blocking=True)
|
|
|
|
# forward pass model
|
|
outputs = model(inputs)
|
|
|
|
# loss computation
|
|
loss = criterion(outputs.view(c.num_speakers_in_batch, outputs.shape[0] // c.num_speakers_in_batch, -1), labels)
|
|
loss.backward()
|
|
grad_norm, _ = check_update(model, c.grad_clip)
|
|
optimizer.step()
|
|
|
|
step_time = time.time() - start_time
|
|
epoch_time += step_time
|
|
|
|
# Averaged Loss and Averaged Loader Time
|
|
avg_loss = 0.01 * loss.item() + 0.99 * avg_loss if avg_loss != 0 else loss.item()
|
|
num_loader_workers = c.num_loader_workers if c.num_loader_workers > 0 else 1
|
|
avg_loader_time = (
|
|
1 / num_loader_workers * loader_time + (num_loader_workers - 1) / num_loader_workers * avg_loader_time
|
|
if avg_loader_time != 0
|
|
else loader_time
|
|
)
|
|
current_lr = optimizer.param_groups[0]["lr"]
|
|
|
|
if global_step % c.steps_plot_stats == 0:
|
|
# Plot Training Epoch Stats
|
|
train_stats = {
|
|
"loss": avg_loss,
|
|
"lr": current_lr,
|
|
"grad_norm": grad_norm,
|
|
"step_time": step_time,
|
|
"avg_loader_time": avg_loader_time,
|
|
}
|
|
tb_logger.tb_train_epoch_stats(global_step, train_stats)
|
|
figures = {
|
|
# FIXME: not constant
|
|
"UMAP Plot": plot_embeddings(outputs.detach().cpu().numpy(), 10),
|
|
}
|
|
tb_logger.tb_train_figures(global_step, figures)
|
|
|
|
if global_step % c.print_step == 0:
|
|
print(
|
|
" | > Step:{} Loss:{:.5f} AvgLoss:{:.5f} GradNorm:{:.5f} "
|
|
"StepTime:{:.2f} LoaderTime:{:.2f} AvGLoaderTime:{:.2f} LR:{:.6f}".format(
|
|
global_step, loss.item(), avg_loss, grad_norm, step_time, loader_time, avg_loader_time, current_lr
|
|
),
|
|
flush=True,
|
|
)
|
|
avg_loss_all += avg_loss
|
|
|
|
if global_step >= c.max_train_step or global_step % c.save_step == 0:
|
|
# save best model only
|
|
best_loss = save_best_model(model, optimizer, criterion, avg_loss, best_loss, OUT_PATH, global_step)
|
|
avg_loss_all = 0
|
|
if global_step >= c.max_train_step:
|
|
break
|
|
|
|
end_time = time.time()
|
|
|
|
return avg_loss, global_step
|
|
|
|
|
|
def main(args): # pylint: disable=redefined-outer-name
|
|
# pylint: disable=global-variable-undefined
|
|
global meta_data_train
|
|
global meta_data_eval
|
|
|
|
ap = AudioProcessor(**c.audio)
|
|
model = setup_model(c)
|
|
|
|
optimizer = RAdam(model.parameters(), lr=c.lr)
|
|
|
|
# pylint: disable=redefined-outer-name
|
|
meta_data_train, meta_data_eval = load_meta_data(c.datasets, eval_split=False)
|
|
|
|
data_loader, num_speakers = setup_loader(ap, is_val=False, verbose=True)
|
|
|
|
if c.loss == "ge2e":
|
|
criterion = GE2ELoss(loss_method="softmax")
|
|
elif c.loss == "angleproto":
|
|
criterion = AngleProtoLoss()
|
|
elif c.loss == "softmaxproto":
|
|
criterion = SoftmaxAngleProtoLoss(c.model_params["proj_dim"], num_speakers)
|
|
else:
|
|
raise Exception("The %s not is a loss supported" % c.loss)
|
|
|
|
if args.restore_path:
|
|
checkpoint = torch.load(args.restore_path)
|
|
try:
|
|
model.load_state_dict(checkpoint["model"])
|
|
|
|
if "criterion" in checkpoint:
|
|
criterion.load_state_dict(checkpoint["criterion"])
|
|
|
|
except (KeyError, RuntimeError):
|
|
print(" > Partial model initialization.")
|
|
model_dict = model.state_dict()
|
|
model_dict = set_init_dict(model_dict, checkpoint["model"], c)
|
|
model.load_state_dict(model_dict)
|
|
del model_dict
|
|
for group in optimizer.param_groups:
|
|
group["lr"] = c.lr
|
|
|
|
print(" > Model restored from step %d" % checkpoint["step"], flush=True)
|
|
args.restore_step = checkpoint["step"]
|
|
else:
|
|
args.restore_step = 0
|
|
|
|
if c.lr_decay:
|
|
scheduler = NoamLR(optimizer, warmup_steps=c.warmup_steps, last_epoch=args.restore_step - 1)
|
|
else:
|
|
scheduler = None
|
|
|
|
num_params = count_parameters(model)
|
|
print("\n > Model has {} parameters".format(num_params), flush=True)
|
|
|
|
if use_cuda:
|
|
model = model.cuda()
|
|
criterion.cuda()
|
|
|
|
global_step = args.restore_step
|
|
_, global_step = train(model, optimizer, scheduler, criterion, data_loader, global_step)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args, c, OUT_PATH, AUDIO_PATH, c_logger, tb_logger = init_training(sys.argv)
|
|
|
|
try:
|
|
main(args)
|
|
except KeyboardInterrupt:
|
|
remove_experiment_folder(OUT_PATH)
|
|
try:
|
|
sys.exit(0)
|
|
except SystemExit:
|
|
os._exit(0) # pylint: disable=protected-access
|
|
except Exception: # pylint: disable=broad-except
|
|
remove_experiment_folder(OUT_PATH)
|
|
traceback.print_exc()
|
|
sys.exit(1)
|