coqui-tts/TTS/vocoder/models/multi_period_discriminator.py

78 lines
2.6 KiB
Python

from torch import nn
import torch.nn.functional as F
from TTS.vocoder.models.melgan_multiscale_discriminator import MelganMultiscaleDiscriminator
class PeriodDiscriminator(nn.Module):
def __init__(self, period):
super(PeriodDiscriminator, self).__init__()
layer = []
self.period = period
inp = 1
for l in range(4):
out = int(2**(5 + l + 1))
layer += [
nn.utils.weight_norm(
nn.Conv2d(inp, out, kernel_size=(5, 1), stride=(3, 1))),
nn.LeakyReLU(0.2)
]
inp = out
self.layer = nn.Sequential(*layer)
self.output = nn.Sequential(
nn.utils.weight_norm(nn.Conv2d(out, 1024, kernel_size=(5, 1))),
nn.LeakyReLU(0.2),
nn.utils.weight_norm(nn.Conv2d(1024, 1, kernel_size=(3, 1))))
def forward(self, x):
batch_size = x.shape[0]
pad = self.period - (x.shape[-1] % self.period)
x = F.pad(x, (0, pad))
y = x.view(batch_size, -1, self.period).contiguous()
y = y.unsqueeze(1)
out1 = self.layer(y)
return self.output(out1)
class HifiDiscriminator(nn.Module):
def __init__(self,
periods=[2, 3, 5, 7, 11],
in_channels=1,
out_channels=1,
num_scales=3,
kernel_sizes=(5, 3),
base_channels=64,
max_channels=1024,
downsample_factors=(2, 2, 4, 4),
pooling_kernel_size=4,
pooling_stride=2,
pooling_padding=1):
super().__init__()
self.discriminators = nn.ModuleList([
PeriodDiscriminator(periods[0]),
PeriodDiscriminator(periods[1]),
PeriodDiscriminator(periods[2]),
PeriodDiscriminator(periods[3]),
PeriodDiscriminator(periods[4])
])
self.msd = MelganMultiscaleDiscriminator(
in_channels=in_channels,
out_channels=out_channels,
num_scales=num_scales,
kernel_sizes=kernel_sizes,
base_channels=base_channels,
max_channels=max_channels,
downsample_factors=downsample_factors,
pooling_kernel_size=pooling_kernel_size,
pooling_stride=pooling_stride,
pooling_padding=pooling_padding,
groups_denominator=32,
max_groups=16)
def forward(self, x):
scores, feats = self.msd(x)
for key, disc in enumerate(self.discriminators):
score = disc(x)
scores.append(score)
return scores, feats