coqui-tts/datasets/LJSpeech.py

93 lines
3.6 KiB
Python

import pandas as pd
import os
import numpy as np
import collections
import librosa
import torch
from torch.utils.data import Dataset
from TTS.utils.text import text_to_sequence
from TTS.utils.audio import AudioProcessor
from TTS.utils.data import prepare_data, pad_data, pad_per_step
class LJSpeechDataset(Dataset):
def __init__(self, csv_file, root_dir, outputs_per_step, sample_rate,
text_cleaner, num_mels, min_level_db, frame_shift_ms,
frame_length_ms, preemphasis, ref_level_db, num_freq, power):
self.frames = pd.read_csv(csv_file, sep='|', header=None)
self.root_dir = root_dir
self.outputs_per_step = outputs_per_step
self.sample_rate = sample_rate
self.cleaners = text_cleaner
self.ap = AudioProcessor(sample_rate, num_mels, min_level_db, frame_shift_ms,
frame_length_ms, preemphasis, ref_level_db, num_freq, power
)
print(" > Reading LJSpeech from - {}".format(root_dir))
print(" | > Number of instances : {}".format(len(self.frames)))
def load_wav(self, filename):
try:
audio = librosa.core.load(filename, sr=self.sample_rate)
return audio
except RuntimeError as e:
print(" !! Cannot read file : {}".format(filename))
def __len__(self):
return len(self.frames)
def __getitem__(self, idx):
wav_name = os.path.join(self.root_dir,
self.frames.ix[idx, 0]) + '.wav'
text = self.frames.ix[idx, 1]
text = np.asarray(text_to_sequence(text, [self.cleaners]), dtype=np.int32)
wav = np.asarray(self.load_wav(wav_name)[0], dtype=np.float32)
sample = {'text': text, 'wav': wav, 'item_idx': self.frames.ix[idx, 0]}
return sample
def get_dummy_data(self):
return torch.autograd.Variable(torch.ones(16, 143)).type(torch.LongTensor)
def collate_fn(self, batch):
# Puts each data field into a tensor with outer dimension batch size
if isinstance(batch[0], collections.Mapping):
keys = list()
wav = [d['wav'] for d in batch]
item_idxs = [d['item_idx'] for d in batch]
text = [d['text'] for d in batch]
text_lenghts = np.array([len(x) for x in text])
max_text_len = np.max(text_lenghts)
# PAD sequences with largest length of the batch
text = prepare_data(text).astype(np.int32)
wav = prepare_data(wav)
linear = np.array([self.ap.spectrogram(w).astype('float32') for w in wav])
mel = np.array([self.ap.melspectrogram(w).astype('float32') for w in wav])
assert mel.shape[2] == linear.shape[2]
timesteps = mel.shape[2]
# PAD with zeros that can be divided by outputs per step
if timesteps % self.outputs_per_step != 0:
linear = pad_per_step(linear, self.outputs_per_step)
mel = pad_per_step(mel, self.outputs_per_step)
# reshape jombo
linear = linear.transpose(0, 2, 1)
mel = mel.transpose(0, 2, 1)
# convert things to pytorch
text_lenghts = torch.LongTensor(text_lenghts)
text = torch.LongTensor(text)
linear = torch.FloatTensor(linear)
mel = torch.FloatTensor(mel)
return text, text_lenghts, linear, mel, item_idxs[0]
raise TypeError(("batch must contain tensors, numbers, dicts or lists;\
found {}"
.format(type(batch[0]))))