mirror of https://github.com/coqui-ai/TTS.git
85 lines
3.1 KiB
Python
85 lines
3.1 KiB
Python
import os
|
|
|
|
# Trainer: Where the ✨️ happens.
|
|
# TrainingArgs: Defines the set of arguments of the Trainer.
|
|
from trainer import Trainer, TrainerArgs
|
|
|
|
# GlowTTSConfig: all model related values for training, validating and testing.
|
|
from TTS.tts.configs.glow_tts_config import GlowTTSConfig
|
|
|
|
# BaseDatasetConfig: defines name, formatter and path of the dataset.
|
|
from TTS.tts.configs.shared_configs import BaseDatasetConfig
|
|
from TTS.tts.datasets import load_tts_samples
|
|
from TTS.tts.models.glow_tts import GlowTTS
|
|
from TTS.tts.utils.text.tokenizer import TTSTokenizer
|
|
from TTS.utils.audio import AudioProcessor
|
|
|
|
# we use the same path as this script as our training folder.
|
|
output_path = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
# DEFINE DATASET CONFIG
|
|
# Set LJSpeech as our target dataset and define its path.
|
|
# You can also use a simple Dict to define the dataset and pass it to your custom formatter.
|
|
dataset_config = BaseDatasetConfig(
|
|
formatter="ljspeech", meta_file_train="metadata.csv", path=os.path.join(output_path, "../LJSpeech-1.1/")
|
|
)
|
|
|
|
# INITIALIZE THE TRAINING CONFIGURATION
|
|
# Configure the model. Every config class inherits the BaseTTSConfig.
|
|
config = GlowTTSConfig(
|
|
batch_size=32,
|
|
eval_batch_size=16,
|
|
num_loader_workers=4,
|
|
num_eval_loader_workers=4,
|
|
run_eval=True,
|
|
test_delay_epochs=-1,
|
|
epochs=1000,
|
|
text_cleaner="phoneme_cleaners",
|
|
use_phonemes=True,
|
|
phoneme_language="en-us",
|
|
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
|
|
print_step=25,
|
|
print_eval=False,
|
|
mixed_precision=True,
|
|
output_path=output_path,
|
|
datasets=[dataset_config],
|
|
)
|
|
|
|
# INITIALIZE THE AUDIO PROCESSOR
|
|
# Audio processor is used for feature extraction and audio I/O.
|
|
# It mainly serves to the dataloader and the training loggers.
|
|
ap = AudioProcessor.init_from_config(config)
|
|
|
|
# INITIALIZE THE TOKENIZER
|
|
# Tokenizer is used to convert text to sequences of token IDs.
|
|
# If characters are not defined in the config, default characters are passed to the config
|
|
tokenizer, config = TTSTokenizer.init_from_config(config)
|
|
|
|
# LOAD DATA SAMPLES
|
|
# Each sample is a list of ```[text, audio_file_path, speaker_name]```
|
|
# You can define your custom sample loader returning the list of samples.
|
|
# Or define your custom formatter and pass it to the `load_tts_samples`.
|
|
# Check `TTS.tts.datasets.load_tts_samples` for more details.
|
|
train_samples, eval_samples = load_tts_samples(
|
|
dataset_config,
|
|
eval_split=True,
|
|
eval_split_max_size=config.eval_split_max_size,
|
|
eval_split_size=config.eval_split_size,
|
|
)
|
|
|
|
# INITIALIZE THE MODEL
|
|
# Models take a config object and a speaker manager as input
|
|
# Config defines the details of the model like the number of layers, the size of the embedding, etc.
|
|
# Speaker manager is used by multi-speaker models.
|
|
model = GlowTTS(config, ap, tokenizer, speaker_manager=None)
|
|
|
|
# INITIALIZE THE TRAINER
|
|
# Trainer provides a generic API to train all the 🐸TTS models with all its perks like mixed-precision training,
|
|
# distributed training, etc.
|
|
trainer = Trainer(
|
|
TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples
|
|
)
|
|
|
|
# AND... 3,2,1... 🚀
|
|
trainer.fit()
|