coqui-tts/TTS/tts/models/base_tts.py

318 lines
13 KiB
Python

import os
from typing import Dict, List, Tuple
import torch
import torch.distributed as dist
from coqpit import Coqpit
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from TTS.model import BaseModel
from TTS.tts.datasets import TTSDataset
from TTS.tts.utils.speakers import SpeakerManager, get_speaker_manager
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text import make_symbols
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
from TTS.utils.audio import AudioProcessor
# pylint: skip-file
class BaseTTS(BaseModel):
"""Abstract `tts` class. Every new `tts` model must inherit this.
It defines `tts` specific functions on top of `Model`.
Notes on input/output tensor shapes:
Any input or output tensor of the model must be shaped as
- 3D tensors `batch x time x channels`
- 2D tensors `batch x channels`
- 1D tensors `batch x 1`
"""
@staticmethod
def get_characters(config: Coqpit) -> str:
# TODO: implement CharacterProcessor
if config.characters is not None:
symbols, phonemes = make_symbols(**config.characters)
else:
from TTS.tts.utils.text.symbols import parse_symbols, phonemes, symbols
config.characters = parse_symbols()
model_characters = phonemes if config.use_phonemes else symbols
num_chars = len(model_characters) + getattr(config, "add_blank", False)
return model_characters, config, num_chars
def get_speaker_manager(config: Coqpit, restore_path: str, data: List, out_path: str = None) -> SpeakerManager:
return get_speaker_manager(config, restore_path, data, out_path)
def init_multispeaker(self, config: Coqpit, data: List = None):
"""Initialize a speaker embedding layer if needen and define expected embedding channel size for defining
`in_channels` size of the connected layers.
This implementation yields 3 possible outcomes:
1. If `config.use_speaker_embedding` and `config.use_d_vector_file are False, do nothing.
2. If `config.use_d_vector_file` is True, set expected embedding channel size to `config.d_vector_dim` or 512.
3. If `config.use_speaker_embedding`, initialize a speaker embedding layer with channel size of
`config.d_vector_dim` or 512.
You can override this function for new models.0
Args:
config (Coqpit): Model configuration.
data (List, optional): Dataset items to infer number of speakers. Defaults to None.
"""
# init speaker manager
self.speaker_manager = get_speaker_manager(config, data=data)
# set number of speakers - if num_speakers is set in config, use it, otherwise use speaker_manager
if data is not None or self.speaker_manager.speaker_ids:
self.num_speakers = self.speaker_manager.num_speakers
else:
self.num_speakers = (
config.num_speakers
if "num_speakers" in config and config.num_speakers != 0
else self.speaker_manager.num_speakers
)
# set ultimate speaker embedding size
if config.use_speaker_embedding or config.use_d_vector_file:
self.embedded_speaker_dim = (
config.d_vector_dim if "d_vector_dim" in config and config.d_vector_dim is not None else 512
)
# init speaker embedding layer
if config.use_speaker_embedding and not config.use_d_vector_file:
self.speaker_embedding = nn.Embedding(self.num_speakers, self.embedded_speaker_dim)
self.speaker_embedding.weight.data.normal_(0, 0.3)
def get_aux_input(self, **kwargs) -> Dict:
"""Prepare and return `aux_input` used by `forward()`"""
return {"speaker_id": None, "style_wav": None, "d_vector": None}
def format_batch(self, batch: Dict) -> Dict:
"""Generic batch formatting for `TTSDataset`.
You must override this if you use a custom dataset.
Args:
batch (Dict): [description]
Returns:
Dict: [description]
"""
# setup input batch
text_input = batch["text"]
text_lengths = batch["text_lengths"]
speaker_names = batch["speaker_names"]
linear_input = batch["linear"]
mel_input = batch["mel"]
mel_lengths = batch["mel_lengths"]
stop_targets = batch["stop_targets"]
item_idx = batch["item_idxs"]
d_vectors = batch["d_vectors"]
speaker_ids = batch["speaker_ids"]
attn_mask = batch["attns"]
waveform = batch["waveform"]
pitch = batch["pitch"]
max_text_length = torch.max(text_lengths.float())
max_spec_length = torch.max(mel_lengths.float())
# compute durations from attention masks
durations = None
if attn_mask is not None:
durations = torch.zeros(attn_mask.shape[0], attn_mask.shape[2])
for idx, am in enumerate(attn_mask):
# compute raw durations
c_idxs = am[:, : text_lengths[idx], : mel_lengths[idx]].max(1)[1]
# c_idxs, counts = torch.unique_consecutive(c_idxs, return_counts=True)
c_idxs, counts = torch.unique(c_idxs, return_counts=True)
dur = torch.ones([text_lengths[idx]]).to(counts.dtype)
dur[c_idxs] = counts
# smooth the durations and set any 0 duration to 1
# by cutting off from the largest duration indeces.
extra_frames = dur.sum() - mel_lengths[idx]
largest_idxs = torch.argsort(-dur)[:extra_frames]
dur[largest_idxs] -= 1
assert (
dur.sum() == mel_lengths[idx]
), f" [!] total duration {dur.sum()} vs spectrogram length {mel_lengths[idx]}"
durations[idx, : text_lengths[idx]] = dur
# set stop targets wrt reduction factor
stop_targets = stop_targets.view(text_input.shape[0], stop_targets.size(1) // self.config.r, -1)
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze(2)
stop_target_lengths = torch.divide(mel_lengths, self.config.r).ceil_()
return {
"text_input": text_input,
"text_lengths": text_lengths,
"speaker_names": speaker_names,
"mel_input": mel_input,
"mel_lengths": mel_lengths,
"linear_input": linear_input,
"stop_targets": stop_targets,
"stop_target_lengths": stop_target_lengths,
"attn_mask": attn_mask,
"durations": durations,
"speaker_ids": speaker_ids,
"d_vectors": d_vectors,
"max_text_length": float(max_text_length),
"max_spec_length": float(max_spec_length),
"item_idx": item_idx,
"waveform": waveform,
"pitch": pitch,
}
def get_data_loader(
self,
config: Coqpit,
ap: AudioProcessor,
is_eval: bool,
data_items: List,
verbose: bool,
num_gpus: int,
rank: int = None,
) -> "DataLoader":
if is_eval and not config.run_eval:
loader = None
else:
# setup multi-speaker attributes
if hasattr(self, "speaker_manager"):
speaker_id_mapping = self.speaker_manager.speaker_ids if config.use_speaker_embedding else None
d_vector_mapping = (
self.speaker_manager.d_vectors
if config.use_speaker_embedding and config.use_d_vector_file
else None
)
else:
speaker_id_mapping = None
d_vector_mapping = None
# setup custom symbols if needed
custom_symbols = None
if hasattr(self, "make_symbols"):
custom_symbols = self.make_symbols(self.config)
# init dataset
dataset = TTSDataset(
outputs_per_step=config.r if "r" in config else 1,
text_cleaner=config.text_cleaner,
compute_linear_spec=config.model.lower() == "tacotron" or config.compute_linear_spec,
compute_f0=config.get("compute_f0", False),
f0_cache_path=config.get("f0_cache_path", None),
meta_data=data_items,
ap=ap,
characters=config.characters,
custom_symbols=custom_symbols,
add_blank=config["add_blank"],
return_wav=config.return_wav if "return_wav" in config else False,
batch_group_size=0 if is_eval else config.batch_group_size * config.batch_size,
min_seq_len=config.min_seq_len,
max_seq_len=config.max_seq_len,
phoneme_cache_path=config.phoneme_cache_path,
use_phonemes=config.use_phonemes,
phoneme_language=config.phoneme_language,
enable_eos_bos=config.enable_eos_bos_chars,
use_noise_augment=not is_eval,
verbose=verbose,
speaker_id_mapping=speaker_id_mapping,
d_vector_mapping=d_vector_mapping
if config.use_speaker_embedding and config.use_d_vector_file
else None,
)
# pre-compute phonemes
if config.use_phonemes and config.compute_input_seq_cache and rank in [None, 0]:
if hasattr(self, "eval_data_items") and is_eval:
dataset.items = self.eval_data_items
elif hasattr(self, "train_data_items") and not is_eval:
dataset.items = self.train_data_items
else:
# precompute phonemes for precise estimate of sequence lengths.
# otherwise `dataset.sort_items()` uses raw text lengths
dataset.compute_input_seq(config.num_loader_workers)
# TODO: find a more efficient solution
# cheap hack - store items in the model state to avoid recomputing when reinit the dataset
if is_eval:
self.eval_data_items = dataset.items
else:
self.train_data_items = dataset.items
# halt DDP processes for the main process to finish computing the phoneme cache
if num_gpus > 1:
dist.barrier()
# sort input sequences from short to long
dataset.sort_and_filter_items(config.get("sort_by_audio_len", default=False))
# compute pitch frames and write to files.
if config.compute_f0 and rank in [None, 0]:
if not os.path.exists(config.f0_cache_path):
dataset.pitch_extractor.compute_pitch(
ap, config.get("f0_cache_path", None), config.num_loader_workers
)
# halt DDP processes for the main process to finish computing the F0 cache
if num_gpus > 1:
dist.barrier()
# load pitch stats computed above by all the workers
if config.compute_f0:
dataset.pitch_extractor.load_pitch_stats(config.get("f0_cache_path", None))
# sampler for DDP
sampler = DistributedSampler(dataset) if num_gpus > 1 else None
# init dataloader
loader = DataLoader(
dataset,
batch_size=config.eval_batch_size if is_eval else config.batch_size,
shuffle=False,
collate_fn=dataset.collate_fn,
drop_last=False,
sampler=sampler,
num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers,
pin_memory=False,
)
return loader
def test_run(self, ap) -> Tuple[Dict, Dict]:
"""Generic test run for `tts` models used by `Trainer`.
You can override this for a different behaviour.
Returns:
Tuple[Dict, Dict]: Test figures and audios to be projected to Tensorboard.
"""
print(" | > Synthesizing test sentences.")
test_audios = {}
test_figures = {}
test_sentences = self.config.test_sentences
aux_inputs = self.get_aux_input()
for idx, sen in enumerate(test_sentences):
outputs_dict = synthesis(
self,
sen,
self.config,
"cuda" in str(next(self.parameters()).device),
ap,
speaker_id=aux_inputs["speaker_id"],
d_vector=aux_inputs["d_vector"],
style_wav=aux_inputs["style_wav"],
enable_eos_bos_chars=self.config.enable_eos_bos_chars,
use_griffin_lim=True,
do_trim_silence=False,
)
test_audios["{}-audio".format(idx)] = outputs_dict["wav"]
test_figures["{}-prediction".format(idx)] = plot_spectrogram(
outputs_dict["outputs"]["model_outputs"], ap, output_fig=False
)
test_figures["{}-alignment".format(idx)] = plot_alignment(
outputs_dict["outputs"]["alignments"], output_fig=False
)
return test_figures, test_audios