coqui-tts/TTS/tts/utils/io.py

58 lines
2.1 KiB
Python

import os
import torch
import datetime
import pickle as pickle_tts
from TTS.utils.io import RenamingUnpickler
def load_checkpoint(model, checkpoint_path, amp=None, use_cuda=False):
try:
state = torch.load(checkpoint_path, map_location=torch.device('cpu'))
except ModuleNotFoundError:
pickle_tts.Unpickler = RenamingUnpickler
state = torch.load(checkpoint_path, map_location=torch.device('cpu'), pickle_module=pickle_tts)
model.load_state_dict(state['model'])
if amp and 'amp' in state:
amp.load_state_dict(state['amp'])
if use_cuda:
model.cuda()
# set model stepsize
if hasattr(model.decoder, 'r'):
model.decoder.set_r(state['r'])
print(" > Model r: ", state['r'])
return model, state
def save_model(model, optimizer, current_step, epoch, r, output_path, amp_state_dict=None, **kwargs):
new_state_dict = model.state_dict()
state = {
'model': new_state_dict,
'optimizer': optimizer.state_dict() if optimizer is not None else None,
'step': current_step,
'epoch': epoch,
'date': datetime.date.today().strftime("%B %d, %Y"),
'r': r
}
if amp_state_dict:
state['amp'] = amp_state_dict
state.update(kwargs)
torch.save(state, output_path)
def save_checkpoint(model, optimizer, current_step, epoch, r, output_folder, **kwargs):
file_name = 'checkpoint_{}.pth.tar'.format(current_step)
checkpoint_path = os.path.join(output_folder, file_name)
print(" > CHECKPOINT : {}".format(checkpoint_path))
save_model(model, optimizer, current_step, epoch, r, checkpoint_path, **kwargs)
def save_best_model(target_loss, best_loss, model, optimizer, current_step, epoch, r, output_folder, **kwargs):
if target_loss < best_loss:
file_name = 'best_model.pth.tar'
checkpoint_path = os.path.join(output_folder, file_name)
print(" >> BEST MODEL : {}".format(checkpoint_path))
save_model(model, optimizer, current_step, epoch, r, checkpoint_path, model_loss=target_loss, **kwargs)
best_loss = target_loss
return best_loss