coqui-tts/mozilla_voice_tts/bin/train_vocoder.py

666 lines
24 KiB
Python

import argparse
import glob
import os
import sys
import time
import traceback
from inspect import signature
import torch
from torch.utils.data import DataLoader
from mozilla_voice_tts.utils.audio import AudioProcessor
from mozilla_voice_tts.utils.console_logger import ConsoleLogger
from mozilla_voice_tts.utils.generic_utils import (KeepAverage,
count_parameters,
create_experiment_folder,
get_git_branch,
remove_experiment_folder,
set_init_dict)
from mozilla_voice_tts.utils.io import copy_config_file, load_config
from mozilla_voice_tts.utils.radam import RAdam
from mozilla_voice_tts.utils.tensorboard_logger import TensorboardLogger
from mozilla_voice_tts.utils.training import setup_torch_training_env
from mozilla_voice_tts.vocoder.datasets.gan_dataset import GANDataset
from mozilla_voice_tts.vocoder.datasets.preprocess import (load_wav_data,
load_wav_feat_data)
# from distribute import (DistributedSampler, apply_gradient_allreduce,
# init_distributed, reduce_tensor)
from mozilla_voice_tts.vocoder.layers.losses import (DiscriminatorLoss,
GeneratorLoss)
from mozilla_voice_tts.vocoder.utils.generic_utils import (check_config,
plot_results,
setup_discriminator,
setup_generator)
from mozilla_voice_tts.vocoder.utils.io import save_best_model, save_checkpoint
use_cuda, num_gpus = setup_torch_training_env(True, True)
def setup_loader(ap, is_val=False, verbose=False):
if is_val and not c.run_eval:
loader = None
else:
dataset = GANDataset(ap=ap,
items=eval_data if is_val else train_data,
seq_len=c.seq_len,
hop_len=ap.hop_length,
pad_short=c.pad_short,
conv_pad=c.conv_pad,
is_training=not is_val,
return_segments=not is_val,
use_noise_augment=c.use_noise_augment,
use_cache=c.use_cache,
verbose=verbose)
dataset.shuffle_mapping()
# sampler = DistributedSampler(dataset) if num_gpus > 1 else None
loader = DataLoader(dataset,
batch_size=1 if is_val else c.batch_size,
shuffle=True,
drop_last=False,
sampler=None,
num_workers=c.num_val_loader_workers
if is_val else c.num_loader_workers,
pin_memory=False)
return loader
def format_data(data):
if isinstance(data[0], list):
# setup input data
c_G, x_G = data[0]
c_D, x_D = data[1]
# dispatch data to GPU
if use_cuda:
c_G = c_G.cuda(non_blocking=True)
x_G = x_G.cuda(non_blocking=True)
c_D = c_D.cuda(non_blocking=True)
x_D = x_D.cuda(non_blocking=True)
return c_G, x_G, c_D, x_D
# return a whole audio segment
co, x = data
if use_cuda:
co = co.cuda(non_blocking=True)
x = x.cuda(non_blocking=True)
return co, x, None, None
def train(model_G, criterion_G, optimizer_G, model_D, criterion_D, optimizer_D,
scheduler_G, scheduler_D, ap, global_step, epoch):
data_loader = setup_loader(ap, is_val=False, verbose=(epoch == 0))
model_G.train()
model_D.train()
epoch_time = 0
keep_avg = KeepAverage()
if use_cuda:
batch_n_iter = int(
len(data_loader.dataset) / (c.batch_size * num_gpus))
else:
batch_n_iter = int(len(data_loader.dataset) / c.batch_size)
end_time = time.time()
c_logger.print_train_start()
for num_iter, data in enumerate(data_loader):
start_time = time.time()
# format data
c_G, y_G, c_D, y_D = format_data(data)
loader_time = time.time() - end_time
global_step += 1
##############################
# GENERATOR
##############################
# generator pass
y_hat = model_G(c_G)
y_hat_sub = None
y_G_sub = None
y_hat_vis = y_hat # for visualization
# PQMF formatting
if y_hat.shape[1] > 1:
y_hat_sub = y_hat
y_hat = model_G.pqmf_synthesis(y_hat)
y_hat_vis = y_hat
y_G_sub = model_G.pqmf_analysis(y_G)
scores_fake, feats_fake, feats_real = None, None, None
if global_step > c.steps_to_start_discriminator:
# run D with or without cond. features
if len(signature(model_D.forward).parameters) == 2:
D_out_fake = model_D(y_hat, c_G)
else:
D_out_fake = model_D(y_hat)
D_out_real = None
if c.use_feat_match_loss:
with torch.no_grad():
D_out_real = model_D(y_G)
# format D outputs
if isinstance(D_out_fake, tuple):
scores_fake, feats_fake = D_out_fake
if D_out_real is None:
feats_real = None
else:
_, feats_real = D_out_real
else:
scores_fake = D_out_fake
# compute losses
loss_G_dict = criterion_G(y_hat, y_G, scores_fake, feats_fake,
feats_real, y_hat_sub, y_G_sub)
loss_G = loss_G_dict['G_loss']
# optimizer generator
optimizer_G.zero_grad()
loss_G.backward()
if c.gen_clip_grad > 0:
torch.nn.utils.clip_grad_norm_(model_G.parameters(),
c.gen_clip_grad)
optimizer_G.step()
if scheduler_G is not None:
scheduler_G.step()
loss_dict = dict()
for key, value in loss_G_dict.items():
if isinstance(value, int):
loss_dict[key] = value
else:
loss_dict[key] = value.item()
##############################
# DISCRIMINATOR
##############################
if global_step >= c.steps_to_start_discriminator:
# discriminator pass
with torch.no_grad():
y_hat = model_G(c_D)
# PQMF formatting
if y_hat.shape[1] > 1:
y_hat = model_G.pqmf_synthesis(y_hat)
# run D with or without cond. features
if len(signature(model_D.forward).parameters) == 2:
D_out_fake = model_D(y_hat.detach(), c_D)
D_out_real = model_D(y_D, c_D)
else:
D_out_fake = model_D(y_hat.detach())
D_out_real = model_D(y_D)
# format D outputs
if isinstance(D_out_fake, tuple):
scores_fake, feats_fake = D_out_fake
if D_out_real is None:
scores_real, feats_real = None, None
else:
scores_real, feats_real = D_out_real
else:
scores_fake = D_out_fake
scores_real = D_out_real
# compute losses
loss_D_dict = criterion_D(scores_fake, scores_real)
loss_D = loss_D_dict['D_loss']
# optimizer discriminator
optimizer_D.zero_grad()
loss_D.backward()
if c.disc_clip_grad > 0:
torch.nn.utils.clip_grad_norm_(model_D.parameters(),
c.disc_clip_grad)
optimizer_D.step()
if scheduler_D is not None:
scheduler_D.step()
for key, value in loss_D_dict.items():
if isinstance(value, (int, float)):
loss_dict[key] = value
else:
loss_dict[key] = value.item()
step_time = time.time() - start_time
epoch_time += step_time
# get current learning rates
current_lr_G = list(optimizer_G.param_groups)[0]['lr']
current_lr_D = list(optimizer_D.param_groups)[0]['lr']
# update avg stats
update_train_values = dict()
for key, value in loss_dict.items():
update_train_values['avg_' + key] = value
update_train_values['avg_loader_time'] = loader_time
update_train_values['avg_step_time'] = step_time
keep_avg.update_values(update_train_values)
# print training stats
if global_step % c.print_step == 0:
log_dict = {
'step_time': [step_time, 2],
'loader_time': [loader_time, 4],
"current_lr_G": current_lr_G,
"current_lr_D": current_lr_D
}
c_logger.print_train_step(batch_n_iter, num_iter, global_step,
log_dict, loss_dict, keep_avg.avg_values)
# plot step stats
if global_step % 10 == 0:
iter_stats = {
"lr_G": current_lr_G,
"lr_D": current_lr_D,
"step_time": step_time
}
iter_stats.update(loss_dict)
tb_logger.tb_train_iter_stats(global_step, iter_stats)
# save checkpoint
if global_step % c.save_step == 0:
if c.checkpoint:
# save model
save_checkpoint(model_G,
optimizer_G,
scheduler_G,
model_D,
optimizer_D,
scheduler_D,
global_step,
epoch,
OUT_PATH,
model_losses=loss_dict)
# compute spectrograms
figures = plot_results(y_hat_vis, y_G, ap, global_step,
'train')
tb_logger.tb_train_figures(global_step, figures)
# Sample audio
sample_voice = y_hat_vis[0].squeeze(0).detach().cpu().numpy()
tb_logger.tb_train_audios(global_step,
{'train/audio': sample_voice},
c.audio["sample_rate"])
end_time = time.time()
# print epoch stats
c_logger.print_train_epoch_end(global_step, epoch, epoch_time, keep_avg)
# Plot Training Epoch Stats
epoch_stats = {"epoch_time": epoch_time}
epoch_stats.update(keep_avg.avg_values)
tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
# TODO: plot model stats
# if c.tb_model_param_stats:
# tb_logger.tb_model_weights(model, global_step)
return keep_avg.avg_values, global_step
@torch.no_grad()
def evaluate(model_G, criterion_G, model_D, criterion_D, ap, global_step, epoch):
data_loader = setup_loader(ap, is_val=True, verbose=(epoch == 0))
model_G.eval()
model_D.eval()
epoch_time = 0
keep_avg = KeepAverage()
end_time = time.time()
c_logger.print_eval_start()
for num_iter, data in enumerate(data_loader):
start_time = time.time()
# format data
c_G, y_G, _, _ = format_data(data)
loader_time = time.time() - end_time
global_step += 1
##############################
# GENERATOR
##############################
# generator pass
y_hat = model_G(c_G)
y_hat_sub = None
y_G_sub = None
# PQMF formatting
if y_hat.shape[1] > 1:
y_hat_sub = y_hat
y_hat = model_G.pqmf_synthesis(y_hat)
y_G_sub = model_G.pqmf_analysis(y_G)
scores_fake, feats_fake, feats_real = None, None, None
if global_step > c.steps_to_start_discriminator:
if len(signature(model_D.forward).parameters) == 2:
D_out_fake = model_D(y_hat, c_G)
else:
D_out_fake = model_D(y_hat)
D_out_real = None
if c.use_feat_match_loss:
with torch.no_grad():
D_out_real = model_D(y_G)
# format D outputs
if isinstance(D_out_fake, tuple):
scores_fake, feats_fake = D_out_fake
if D_out_real is None:
feats_real = None
else:
_, feats_real = D_out_real
else:
scores_fake = D_out_fake
feats_fake, feats_real = None, None
# compute losses
loss_G_dict = criterion_G(y_hat, y_G, scores_fake, feats_fake,
feats_real, y_hat_sub, y_G_sub)
loss_dict = dict()
for key, value in loss_G_dict.items():
if isinstance(value, (int, float)):
loss_dict[key] = value
else:
loss_dict[key] = value.item()
##############################
# DISCRIMINATOR
##############################
if global_step >= c.steps_to_start_discriminator:
# discriminator pass
with torch.no_grad():
y_hat = model_G(c_G)
# PQMF formatting
if y_hat.shape[1] > 1:
y_hat = model_G.pqmf_synthesis(y_hat)
# run D with or without cond. features
if len(signature(model_D.forward).parameters) == 2:
D_out_fake = model_D(y_hat.detach(), c_G)
D_out_real = model_D(y_G, c_G)
else:
D_out_fake = model_D(y_hat.detach())
D_out_real = model_D(y_G)
# format D outputs
if isinstance(D_out_fake, tuple):
scores_fake, feats_fake = D_out_fake
if D_out_real is None:
scores_real, feats_real = None, None
else:
scores_real, feats_real = D_out_real
else:
scores_fake = D_out_fake
scores_real = D_out_real
# compute losses
loss_D_dict = criterion_D(scores_fake, scores_real)
for key, value in loss_D_dict.items():
if isinstance(value, (int, float)):
loss_dict[key] = value
else:
loss_dict[key] = value.item()
step_time = time.time() - start_time
epoch_time += step_time
# update avg stats
update_eval_values = dict()
for key, value in loss_dict.items():
update_eval_values['avg_' + key] = value
update_eval_values['avg_loader_time'] = loader_time
update_eval_values['avg_step_time'] = step_time
keep_avg.update_values(update_eval_values)
# print eval stats
if c.print_eval:
c_logger.print_eval_step(num_iter, loss_dict, keep_avg.avg_values)
# compute spectrograms
figures = plot_results(y_hat, y_G, ap, global_step, 'eval')
tb_logger.tb_eval_figures(global_step, figures)
# Sample audio
sample_voice = y_hat[0].squeeze(0).detach().cpu().numpy()
tb_logger.tb_eval_audios(global_step, {'eval/audio': sample_voice},
c.audio["sample_rate"])
# synthesize a full voice
data_loader.return_segments = False
tb_logger.tb_eval_stats(global_step, keep_avg.avg_values)
return keep_avg.avg_values
# FIXME: move args definition/parsing inside of main?
def main(args): # pylint: disable=redefined-outer-name
# pylint: disable=global-variable-undefined
global train_data, eval_data
print(f" > Loading wavs from: {c.data_path}")
if c.feature_path is not None:
print(f" > Loading features from: {c.feature_path}")
eval_data, train_data = load_wav_feat_data(c.data_path, c.feature_path, c.eval_split_size)
else:
eval_data, train_data = load_wav_data(c.data_path, c.eval_split_size)
# setup audio processor
ap = AudioProcessor(**c.audio)
# DISTRUBUTED
# if num_gpus > 1:
# init_distributed(args.rank, num_gpus, args.group_id,
# c.distributed["backend"], c.distributed["url"])
# setup models
model_gen = setup_generator(c)
model_disc = setup_discriminator(c)
# setup optimizers
optimizer_gen = RAdam(model_gen.parameters(), lr=c.lr_gen, weight_decay=0)
optimizer_disc = RAdam(model_disc.parameters(),
lr=c.lr_disc,
weight_decay=0)
# schedulers
scheduler_gen = None
scheduler_disc = None
if 'lr_scheduler_gen' in c:
scheduler_gen = getattr(torch.optim.lr_scheduler, c.lr_scheduler_gen)
scheduler_gen = scheduler_gen(optimizer_gen, **c.lr_scheduler_gen_params)
if 'lr_scheduler_disc' in c:
scheduler_disc = getattr(torch.optim.lr_scheduler, c.lr_scheduler_disc)
scheduler_disc = scheduler_disc(optimizer_disc, **c.lr_scheduler_disc_params)
# setup criterion
criterion_gen = GeneratorLoss(c)
criterion_disc = DiscriminatorLoss(c)
if args.restore_path:
checkpoint = torch.load(args.restore_path, map_location='cpu')
try:
print(" > Restoring Generator Model...")
model_gen.load_state_dict(checkpoint['model'])
print(" > Restoring Generator Optimizer...")
optimizer_gen.load_state_dict(checkpoint['optimizer'])
print(" > Restoring Discriminator Model...")
model_disc.load_state_dict(checkpoint['model_disc'])
print(" > Restoring Discriminator Optimizer...")
optimizer_disc.load_state_dict(checkpoint['optimizer_disc'])
if 'scheduler' in checkpoint:
print(" > Restoring Generator LR Scheduler...")
scheduler_gen.load_state_dict(checkpoint['scheduler'])
# NOTE: Not sure if necessary
scheduler_gen.optimizer = optimizer_gen
if 'scheduler_disc' in checkpoint:
print(" > Restoring Discriminator LR Scheduler...")
scheduler_disc.load_state_dict(checkpoint['scheduler_disc'])
scheduler_disc.optimizer = optimizer_disc
except RuntimeError:
# retore only matching layers.
print(" > Partial model initialization...")
model_dict = model_gen.state_dict()
model_dict = set_init_dict(model_dict, checkpoint['model'], c)
model_gen.load_state_dict(model_dict)
model_dict = model_disc.state_dict()
model_dict = set_init_dict(model_dict, checkpoint['model_disc'], c)
model_disc.load_state_dict(model_dict)
del model_dict
# reset lr if not countinuining training.
for group in optimizer_gen.param_groups:
group['lr'] = c.lr_gen
for group in optimizer_disc.param_groups:
group['lr'] = c.lr_disc
print(" > Model restored from step %d" % checkpoint['step'],
flush=True)
args.restore_step = checkpoint['step']
else:
args.restore_step = 0
if use_cuda:
model_gen.cuda()
criterion_gen.cuda()
model_disc.cuda()
criterion_disc.cuda()
# DISTRUBUTED
# if num_gpus > 1:
# model = apply_gradient_allreduce(model)
num_params = count_parameters(model_gen)
print(" > Generator has {} parameters".format(num_params), flush=True)
num_params = count_parameters(model_disc)
print(" > Discriminator has {} parameters".format(num_params), flush=True)
if 'best_loss' not in locals():
best_loss = float('inf')
global_step = args.restore_step
for epoch in range(0, c.epochs):
c_logger.print_epoch_start(epoch, c.epochs)
_, global_step = train(model_gen, criterion_gen, optimizer_gen,
model_disc, criterion_disc, optimizer_disc,
scheduler_gen, scheduler_disc, ap, global_step,
epoch)
eval_avg_loss_dict = evaluate(model_gen, criterion_gen, model_disc, criterion_disc, ap,
global_step, epoch)
c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
target_loss = eval_avg_loss_dict[c.target_loss]
best_loss = save_best_model(target_loss,
best_loss,
model_gen,
optimizer_gen,
scheduler_gen,
model_disc,
optimizer_disc,
scheduler_disc,
global_step,
epoch,
OUT_PATH,
model_losses=eval_avg_loss_dict)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--continue_path',
type=str,
help=
'Training output folder to continue training. Use to continue a training. If it is used, "config_path" is ignored.',
default='',
required='--config_path' not in sys.argv)
parser.add_argument(
'--restore_path',
type=str,
help='Model file to be restored. Use to finetune a model.',
default='')
parser.add_argument('--config_path',
type=str,
help='Path to config file for training.',
required='--continue_path' not in sys.argv)
parser.add_argument('--debug',
type=bool,
default=False,
help='Do not verify commit integrity to run training.')
# DISTRUBUTED
parser.add_argument(
'--rank',
type=int,
default=0,
help='DISTRIBUTED: process rank for distributed training.')
parser.add_argument('--group_id',
type=str,
default="",
help='DISTRIBUTED: process group id.')
args = parser.parse_args()
if args.continue_path != '':
args.output_path = args.continue_path
args.config_path = os.path.join(args.continue_path, 'config.json')
list_of_files = glob.glob(
args.continue_path +
"/*.pth.tar") # * means all if need specific format then *.csv
latest_model_file = max(list_of_files, key=os.path.getctime)
args.restore_path = latest_model_file
print(f" > Training continues for {args.restore_path}")
# setup output paths and read configs
c = load_config(args.config_path)
check_config(c)
_ = os.path.dirname(os.path.realpath(__file__))
OUT_PATH = args.continue_path
if args.continue_path == '':
OUT_PATH = create_experiment_folder(c.output_path, c.run_name,
args.debug)
AUDIO_PATH = os.path.join(OUT_PATH, 'test_audios')
c_logger = ConsoleLogger()
if args.rank == 0:
os.makedirs(AUDIO_PATH, exist_ok=True)
new_fields = {}
if args.restore_path:
new_fields["restore_path"] = args.restore_path
new_fields["github_branch"] = get_git_branch()
copy_config_file(args.config_path,
os.path.join(OUT_PATH, 'config.json'), new_fields)
os.chmod(AUDIO_PATH, 0o775)
os.chmod(OUT_PATH, 0o775)
LOG_DIR = OUT_PATH
tb_logger = TensorboardLogger(LOG_DIR, model_name='VOCODER')
# write model desc to tensorboard
tb_logger.tb_add_text('model-description', c['run_description'], 0)
try:
main(args)
except KeyboardInterrupt:
remove_experiment_folder(OUT_PATH)
try:
sys.exit(0)
except SystemExit:
os._exit(0) # pylint: disable=protected-access
except Exception: # pylint: disable=broad-except
remove_experiment_folder(OUT_PATH)
traceback.print_exc()
sys.exit(1)