mirror of https://github.com/coqui-ai/TTS.git
50 lines
1.8 KiB
Python
50 lines
1.8 KiB
Python
import os
|
|
import torch
|
|
import datetime
|
|
|
|
|
|
def load_checkpoint(model, checkpoint_path, amp=None, use_cuda=False):
|
|
state = torch.load(checkpoint_path, map_location=torch.device('cpu'))
|
|
model.load_state_dict(state['model'])
|
|
if amp and 'amp' in state:
|
|
amp.load_state_dict(state['amp'])
|
|
if use_cuda:
|
|
model.cuda()
|
|
# set model stepsize
|
|
if 'r' in state.keys():
|
|
model.decoder.set_r(state['r'])
|
|
return model, state
|
|
|
|
|
|
def save_model(model, optimizer, current_step, epoch, r, output_path, amp_state_dict=None, **kwargs):
|
|
new_state_dict = model.state_dict()
|
|
state = {
|
|
'model': new_state_dict,
|
|
'optimizer': optimizer.state_dict() if optimizer is not None else None,
|
|
'step': current_step,
|
|
'epoch': epoch,
|
|
'date': datetime.date.today().strftime("%B %d, %Y"),
|
|
'r': r
|
|
}
|
|
if amp_state_dict:
|
|
state['amp'] = amp_state_dict
|
|
state.update(kwargs)
|
|
torch.save(state, output_path)
|
|
|
|
|
|
def save_checkpoint(model, optimizer, current_step, epoch, r, output_folder, **kwargs):
|
|
file_name = 'checkpoint_{}.pth.tar'.format(current_step)
|
|
checkpoint_path = os.path.join(output_folder, file_name)
|
|
print(" > CHECKPOINT : {}".format(checkpoint_path))
|
|
save_model(model, optimizer, current_step, epoch, r, checkpoint_path, **kwargs)
|
|
|
|
|
|
def save_best_model(target_loss, best_loss, model, optimizer, current_step, epoch, r, output_folder, **kwargs):
|
|
if target_loss < best_loss:
|
|
file_name = 'best_model.pth.tar'
|
|
checkpoint_path = os.path.join(output_folder, file_name)
|
|
print(" > BEST MODEL : {}".format(checkpoint_path))
|
|
save_model(model, optimizer, current_step, epoch, r, checkpoint_path, model_loss=target_loss, **kwargs)
|
|
best_loss = target_loss
|
|
return best_loss
|