* Add upsample VITS support * Fix the bug in inference * Fix lint checks * Add RMS based norm in save_wav method * Style fix * Add the period for VITS multi-period discriminator in model_args * Bug fix in speaker encoder load in inference time * Add unit tests * Remove useless detach_z_vocoder parameter * Add docs for VITS upsampling * Fix the docs * Rename TTS_part_sample_rate to encoder_sample_rate * Add upsampling_init and upsampling_z methods * Add asserts for encoder_sample_rate part * Move upsampling tests to test_vits.py |
||
---|---|---|
.. | ||
static | ||
templates | ||
README.md | ||
__init__.py | ||
conf.json | ||
server.py |
README.md
🐸 TTS demo server
Before you use the server, make sure you install) 🐸 TTS properly. Then, you can follow the steps below.
Note: If you install 🐸TTS using pip
, you can also use the tts-server
end point on the terminal.
Examples runs:
List officially released models.
python TTS/server/server.py --list_models
Run the server with the official models.
python TTS/server/server.py --model_name tts_models/en/ljspeech/tacotron2-DCA --vocoder_name vocoder_models/en/ljspeech/multiband-melgan
Run the server with the official models on a GPU.
CUDA_VISIBLE_DEVICES="0" python TTS/server/server.py --model_name tts_models/en/ljspeech/tacotron2-DCA --vocoder_name vocoder_models/en/ljspeech/multiband-melgan --use_cuda True
Run the server with a custom models.
python TTS/server/server.py --tts_checkpoint /path/to/tts/model.pth --tts_config /path/to/tts/config.json --vocoder_checkpoint /path/to/vocoder/model.pth --vocoder_config /path/to/vocoder/config.json