mirror of https://github.com/coqui-ai/TTS.git
635 lines
22 KiB
Python
Executable File
635 lines
22 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# TODO: mixed precision training
|
|
"""Trains GAN based vocoder model."""
|
|
|
|
import os
|
|
import sys
|
|
import time
|
|
import itertools
|
|
import traceback
|
|
from inspect import signature
|
|
|
|
import torch
|
|
|
|
# DISTRIBUTED
|
|
from torch.nn.parallel import DistributedDataParallel as DDP_th
|
|
from torch.utils.data import DataLoader
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
|
|
from TTS.utils.arguments import init_training
|
|
from TTS.utils.audio import AudioProcessor
|
|
from TTS.utils.distribute import init_distributed
|
|
from TTS.utils.generic_utils import KeepAverage, count_parameters, remove_experiment_folder, set_init_dict
|
|
from TTS.utils.training import setup_torch_training_env
|
|
from TTS.vocoder.datasets.gan_dataset import GANDataset
|
|
from TTS.vocoder.datasets.preprocess import load_wav_data, load_wav_feat_data
|
|
from TTS.vocoder.layers.losses import DiscriminatorLoss, GeneratorLoss
|
|
from TTS.vocoder.utils.generic_utils import plot_results, setup_discriminator, setup_generator
|
|
from TTS.vocoder.utils.io import save_best_model, save_checkpoint
|
|
|
|
use_cuda, num_gpus = setup_torch_training_env(True, True)
|
|
|
|
|
|
def setup_loader(ap, is_val=False, verbose=False):
|
|
loader = None
|
|
if not is_val or c.run_eval:
|
|
dataset = GANDataset(
|
|
ap=ap,
|
|
items=eval_data if is_val else train_data,
|
|
seq_len=c.seq_len,
|
|
hop_len=ap.hop_length,
|
|
pad_short=c.pad_short,
|
|
conv_pad=c.conv_pad,
|
|
return_pairs=c.diff_samples_for_G_and_D if "diff_samples_for_G_and_D" in c else False,
|
|
is_training=not is_val,
|
|
return_segments=not is_val,
|
|
use_noise_augment=c.use_noise_augment,
|
|
use_cache=c.use_cache,
|
|
verbose=verbose,
|
|
)
|
|
dataset.shuffle_mapping()
|
|
sampler = DistributedSampler(dataset, shuffle=True) if num_gpus > 1 else None
|
|
loader = DataLoader(
|
|
dataset,
|
|
batch_size=1 if is_val else c.batch_size,
|
|
shuffle=num_gpus == 0,
|
|
drop_last=False,
|
|
sampler=sampler,
|
|
num_workers=c.num_val_loader_workers if is_val else c.num_loader_workers,
|
|
pin_memory=False,
|
|
)
|
|
return loader
|
|
|
|
|
|
def format_data(data):
|
|
if isinstance(data[0], list):
|
|
x_G, y_G = data[0]
|
|
x_D, y_D = data[1]
|
|
if use_cuda:
|
|
x_G = x_G.cuda(non_blocking=True)
|
|
y_G = y_G.cuda(non_blocking=True)
|
|
x_D = x_D.cuda(non_blocking=True)
|
|
y_D = y_D.cuda(non_blocking=True)
|
|
return x_G, y_G, x_D, y_D
|
|
x, y = data
|
|
if use_cuda:
|
|
x = x.cuda(non_blocking=True)
|
|
y = y.cuda(non_blocking=True)
|
|
return x, y, None, None
|
|
|
|
|
|
def train(
|
|
model_G,
|
|
criterion_G,
|
|
optimizer_G,
|
|
model_D,
|
|
criterion_D,
|
|
optimizer_D,
|
|
scheduler_G,
|
|
scheduler_D,
|
|
ap,
|
|
global_step,
|
|
epoch,
|
|
):
|
|
data_loader = setup_loader(ap, is_val=False, verbose=(epoch == 0))
|
|
model_G.train()
|
|
model_D.train()
|
|
epoch_time = 0
|
|
keep_avg = KeepAverage()
|
|
if use_cuda:
|
|
batch_n_iter = int(len(data_loader.dataset) / (c.batch_size * num_gpus))
|
|
else:
|
|
batch_n_iter = int(len(data_loader.dataset) / c.batch_size)
|
|
end_time = time.time()
|
|
c_logger.print_train_start()
|
|
for num_iter, data in enumerate(data_loader):
|
|
start_time = time.time()
|
|
|
|
# format data
|
|
c_G, y_G, c_D, y_D = format_data(data)
|
|
loader_time = time.time() - end_time
|
|
|
|
global_step += 1
|
|
|
|
##############################
|
|
# GENERATOR
|
|
##############################
|
|
|
|
# generator pass
|
|
y_hat = model_G(c_G)
|
|
y_hat_sub = None
|
|
y_G_sub = None
|
|
y_hat_vis = y_hat # for visualization
|
|
|
|
# PQMF formatting
|
|
if y_hat.shape[1] > 1:
|
|
y_hat_sub = y_hat
|
|
y_hat = model_G.pqmf_synthesis(y_hat)
|
|
y_hat_vis = y_hat
|
|
y_G_sub = model_G.pqmf_analysis(y_G)
|
|
|
|
scores_fake, feats_fake, feats_real = None, None, None
|
|
if global_step > c.steps_to_start_discriminator:
|
|
|
|
# run D with or without cond. features
|
|
if len(signature(model_D.forward).parameters) == 2:
|
|
D_out_fake = model_D(y_hat, c_G)
|
|
else:
|
|
D_out_fake = model_D(y_hat)
|
|
D_out_real = None
|
|
|
|
if c.use_feat_match_loss:
|
|
with torch.no_grad():
|
|
D_out_real = model_D(y_G)
|
|
|
|
# format D outputs
|
|
if isinstance(D_out_fake, tuple):
|
|
scores_fake, feats_fake = D_out_fake
|
|
if D_out_real is None:
|
|
feats_real = None
|
|
else:
|
|
# we don't need scores for real samples for training G since they are always 1
|
|
_, feats_real = D_out_real
|
|
else:
|
|
scores_fake = D_out_fake
|
|
|
|
# compute losses
|
|
loss_G_dict = criterion_G(
|
|
y_hat=y_hat,
|
|
y=y_G,
|
|
scores_fake=scores_fake,
|
|
feats_fake=feats_fake,
|
|
feats_real=feats_real,
|
|
y_hat_sub=y_hat_sub,
|
|
y_sub=y_G_sub,
|
|
)
|
|
loss_G = loss_G_dict["G_loss"]
|
|
|
|
# optimizer generator
|
|
optimizer_G.zero_grad()
|
|
loss_G.backward()
|
|
if c.gen_clip_grad > 0:
|
|
torch.nn.utils.clip_grad_norm_(model_G.parameters(), c.gen_clip_grad)
|
|
optimizer_G.step()
|
|
|
|
loss_dict = dict()
|
|
for key, value in loss_G_dict.items():
|
|
if isinstance(value, int):
|
|
loss_dict[key] = value
|
|
else:
|
|
loss_dict[key] = value.item()
|
|
|
|
##############################
|
|
# DISCRIMINATOR
|
|
##############################
|
|
if global_step >= c.steps_to_start_discriminator:
|
|
# discriminator pass
|
|
if c.diff_samples_for_G_and_D:
|
|
# use a different sample than generator
|
|
with torch.no_grad():
|
|
y_hat = model_G(c_D)
|
|
|
|
# PQMF formatting
|
|
if y_hat.shape[1] > 1:
|
|
y_hat = model_G.pqmf_synthesis(y_hat)
|
|
else:
|
|
# use the same samples as generator
|
|
c_D = c_G.clone()
|
|
y_D = y_G.clone()
|
|
|
|
# run D with or without cond. features
|
|
if len(signature(model_D.forward).parameters) == 2:
|
|
D_out_fake = model_D(y_hat.detach().clone(), c_D)
|
|
D_out_real = model_D(y_D, c_D)
|
|
else:
|
|
D_out_fake = model_D(y_hat.detach())
|
|
D_out_real = model_D(y_D)
|
|
|
|
# format D outputs
|
|
if isinstance(D_out_fake, tuple):
|
|
# model_D returns scores and features
|
|
scores_fake, feats_fake = D_out_fake
|
|
if D_out_real is None:
|
|
scores_real, feats_real = None, None
|
|
else:
|
|
scores_real, feats_real = D_out_real
|
|
else:
|
|
# model D returns only scores
|
|
scores_fake = D_out_fake
|
|
scores_real = D_out_real
|
|
|
|
# compute losses
|
|
loss_D_dict = criterion_D(scores_fake, scores_real)
|
|
loss_D = loss_D_dict["D_loss"]
|
|
|
|
# optimizer discriminator
|
|
optimizer_D.zero_grad()
|
|
loss_D.backward()
|
|
if c.disc_clip_grad > 0:
|
|
torch.nn.utils.clip_grad_norm_(model_D.parameters(), c.disc_clip_grad)
|
|
optimizer_D.step()
|
|
|
|
for key, value in loss_D_dict.items():
|
|
if isinstance(value, (int, float)):
|
|
loss_dict[key] = value
|
|
else:
|
|
loss_dict[key] = value.item()
|
|
|
|
step_time = time.time() - start_time
|
|
epoch_time += step_time
|
|
|
|
# get current learning rates
|
|
current_lr_G = list(optimizer_G.param_groups)[0]["lr"]
|
|
current_lr_D = list(optimizer_D.param_groups)[0]["lr"]
|
|
|
|
# update avg stats
|
|
update_train_values = dict()
|
|
for key, value in loss_dict.items():
|
|
update_train_values["avg_" + key] = value
|
|
update_train_values["avg_loader_time"] = loader_time
|
|
update_train_values["avg_step_time"] = step_time
|
|
keep_avg.update_values(update_train_values)
|
|
|
|
# print training stats
|
|
if global_step % c.print_step == 0:
|
|
log_dict = {
|
|
"step_time": [step_time, 2],
|
|
"loader_time": [loader_time, 4],
|
|
"current_lr_G": current_lr_G,
|
|
"current_lr_D": current_lr_D,
|
|
}
|
|
c_logger.print_train_step(batch_n_iter, num_iter, global_step, log_dict, loss_dict, keep_avg.avg_values)
|
|
|
|
if args.rank == 0:
|
|
# plot step stats
|
|
if global_step % 10 == 0:
|
|
iter_stats = {"lr_G": current_lr_G, "lr_D": current_lr_D, "step_time": step_time}
|
|
iter_stats.update(loss_dict)
|
|
tb_logger.tb_train_iter_stats(global_step, iter_stats)
|
|
|
|
# save checkpoint
|
|
if global_step % c.save_step == 0:
|
|
if c.checkpoint:
|
|
# save model
|
|
save_checkpoint(
|
|
model_G,
|
|
optimizer_G,
|
|
scheduler_G,
|
|
model_D,
|
|
optimizer_D,
|
|
scheduler_D,
|
|
global_step,
|
|
epoch,
|
|
OUT_PATH,
|
|
model_losses=loss_dict,
|
|
)
|
|
|
|
# compute spectrograms
|
|
figures = plot_results(y_hat_vis, y_G, ap, global_step, "train")
|
|
tb_logger.tb_train_figures(global_step, figures)
|
|
|
|
# Sample audio
|
|
sample_voice = y_hat_vis[0].squeeze(0).detach().cpu().numpy()
|
|
tb_logger.tb_train_audios(global_step, {"train/audio": sample_voice}, c.audio["sample_rate"])
|
|
end_time = time.time()
|
|
|
|
if scheduler_G is not None:
|
|
scheduler_G.step()
|
|
|
|
if scheduler_D is not None:
|
|
scheduler_D.step()
|
|
|
|
# print epoch stats
|
|
c_logger.print_train_epoch_end(global_step, epoch, epoch_time, keep_avg)
|
|
|
|
# Plot Training Epoch Stats
|
|
epoch_stats = {"epoch_time": epoch_time}
|
|
epoch_stats.update(keep_avg.avg_values)
|
|
if args.rank == 0:
|
|
tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
|
|
# TODO: plot model stats
|
|
# if c.tb_model_param_stats:
|
|
# tb_logger.tb_model_weights(model, global_step)
|
|
torch.cuda.empty_cache()
|
|
return keep_avg.avg_values, global_step
|
|
|
|
|
|
@torch.no_grad()
|
|
def evaluate(model_G, criterion_G, model_D, criterion_D, ap, global_step, epoch):
|
|
data_loader = setup_loader(ap, is_val=True, verbose=(epoch == 0))
|
|
model_G.eval()
|
|
model_D.eval()
|
|
epoch_time = 0
|
|
keep_avg = KeepAverage()
|
|
end_time = time.time()
|
|
c_logger.print_eval_start()
|
|
for num_iter, data in enumerate(data_loader):
|
|
start_time = time.time()
|
|
|
|
# format data
|
|
c_G, y_G, _, _ = format_data(data)
|
|
loader_time = time.time() - end_time
|
|
|
|
global_step += 1
|
|
|
|
##############################
|
|
# GENERATOR
|
|
##############################
|
|
|
|
# generator pass
|
|
y_hat = model_G(c_G)[:, :, : y_G.size(2)]
|
|
y_hat_sub = None
|
|
y_G_sub = None
|
|
|
|
# PQMF formatting
|
|
if y_hat.shape[1] > 1:
|
|
y_hat_sub = y_hat
|
|
y_hat = model_G.pqmf_synthesis(y_hat)
|
|
y_G_sub = model_G.pqmf_analysis(y_G)
|
|
|
|
scores_fake, feats_fake, feats_real = None, None, None
|
|
if global_step > c.steps_to_start_discriminator:
|
|
|
|
if len(signature(model_D.forward).parameters) == 2:
|
|
D_out_fake = model_D(y_hat, c_G)
|
|
else:
|
|
D_out_fake = model_D(y_hat)
|
|
D_out_real = None
|
|
|
|
if c.use_feat_match_loss:
|
|
with torch.no_grad():
|
|
D_out_real = model_D(y_G)
|
|
|
|
# format D outputs
|
|
if isinstance(D_out_fake, tuple):
|
|
scores_fake, feats_fake = D_out_fake
|
|
if D_out_real is None:
|
|
feats_real = None
|
|
else:
|
|
_, feats_real = D_out_real
|
|
else:
|
|
scores_fake = D_out_fake
|
|
feats_fake, feats_real = None, None
|
|
|
|
# compute losses
|
|
loss_G_dict = criterion_G(y_hat, y_G, scores_fake, feats_fake, feats_real, y_hat_sub, y_G_sub)
|
|
|
|
loss_dict = dict()
|
|
for key, value in loss_G_dict.items():
|
|
if isinstance(value, (int, float)):
|
|
loss_dict[key] = value
|
|
else:
|
|
loss_dict[key] = value.item()
|
|
|
|
##############################
|
|
# DISCRIMINATOR
|
|
##############################
|
|
|
|
if global_step >= c.steps_to_start_discriminator:
|
|
# discriminator pass
|
|
with torch.no_grad():
|
|
y_hat = model_G(c_G)[:, :, : y_G.size(2)]
|
|
|
|
# PQMF formatting
|
|
if y_hat.shape[1] > 1:
|
|
y_hat = model_G.pqmf_synthesis(y_hat)
|
|
|
|
# run D with or without cond. features
|
|
if len(signature(model_D.forward).parameters) == 2:
|
|
D_out_fake = model_D(y_hat.detach(), c_G)
|
|
D_out_real = model_D(y_G, c_G)
|
|
else:
|
|
D_out_fake = model_D(y_hat.detach())
|
|
D_out_real = model_D(y_G)
|
|
|
|
# format D outputs
|
|
if isinstance(D_out_fake, tuple):
|
|
scores_fake, feats_fake = D_out_fake
|
|
if D_out_real is None:
|
|
scores_real, feats_real = None, None
|
|
else:
|
|
scores_real, feats_real = D_out_real
|
|
else:
|
|
scores_fake = D_out_fake
|
|
scores_real = D_out_real
|
|
|
|
# compute losses
|
|
loss_D_dict = criterion_D(scores_fake, scores_real)
|
|
|
|
for key, value in loss_D_dict.items():
|
|
if isinstance(value, (int, float)):
|
|
loss_dict[key] = value
|
|
else:
|
|
loss_dict[key] = value.item()
|
|
|
|
step_time = time.time() - start_time
|
|
epoch_time += step_time
|
|
|
|
# update avg stats
|
|
update_eval_values = dict()
|
|
for key, value in loss_dict.items():
|
|
update_eval_values["avg_" + key] = value
|
|
update_eval_values["avg_loader_time"] = loader_time
|
|
update_eval_values["avg_step_time"] = step_time
|
|
keep_avg.update_values(update_eval_values)
|
|
|
|
# print eval stats
|
|
if c.print_eval:
|
|
c_logger.print_eval_step(num_iter, loss_dict, keep_avg.avg_values)
|
|
|
|
if args.rank == 0:
|
|
# compute spectrograms
|
|
figures = plot_results(y_hat, y_G, ap, global_step, "eval")
|
|
tb_logger.tb_eval_figures(global_step, figures)
|
|
|
|
# Sample audio
|
|
predict_waveform = y_hat[0].squeeze(0).detach().cpu().numpy()
|
|
real_waveform = y_G[0].squeeze(0).cpu().numpy()
|
|
tb_logger.tb_eval_audios(
|
|
global_step, {"eval/audio": predict_waveform, "eval/real_waveformo": real_waveform}, c.audio["sample_rate"]
|
|
)
|
|
|
|
tb_logger.tb_eval_stats(global_step, keep_avg.avg_values)
|
|
|
|
# synthesize a full voice
|
|
data_loader.return_segments = False
|
|
torch.cuda.empty_cache()
|
|
return keep_avg.avg_values
|
|
|
|
|
|
def main(args): # pylint: disable=redefined-outer-name
|
|
# pylint: disable=global-variable-undefined
|
|
global train_data, eval_data
|
|
print(f" > Loading wavs from: {c.data_path}")
|
|
if c.feature_path is not None:
|
|
print(f" > Loading features from: {c.feature_path}")
|
|
eval_data, train_data = load_wav_feat_data(c.data_path, c.feature_path, c.eval_split_size)
|
|
else:
|
|
eval_data, train_data = load_wav_data(c.data_path, c.eval_split_size)
|
|
|
|
# setup audio processor
|
|
ap = AudioProcessor(**c.audio.to_dict())
|
|
|
|
# DISTRUBUTED
|
|
if num_gpus > 1:
|
|
init_distributed(args.rank, num_gpus, args.group_id, c.distributed["backend"], c.distributed["url"])
|
|
|
|
# setup models
|
|
model_gen = setup_generator(c)
|
|
model_disc = setup_discriminator(c)
|
|
|
|
# setup criterion
|
|
criterion_gen = GeneratorLoss(c)
|
|
criterion_disc = DiscriminatorLoss(c)
|
|
|
|
if use_cuda:
|
|
model_gen.cuda()
|
|
criterion_gen.cuda()
|
|
model_disc.cuda()
|
|
criterion_disc.cuda()
|
|
|
|
# setup optimizers
|
|
# TODO: allow loading custom optimizers
|
|
optimizer_gen = None
|
|
optimizer_disc = None
|
|
optimizer_gen = getattr(torch.optim, c.optimizer)
|
|
optimizer_gen = optimizer_gen(model_gen.parameters(), lr=c.lr_gen, **c.optimizer_params)
|
|
optimizer_disc = getattr(torch.optim, c.optimizer)
|
|
|
|
if c.discriminator_model == 'hifigan_discriminator':
|
|
optimizer_disc = optimizer_disc(itertools.chain(model_disc.msd.parameters(), model_disc.mpd.parameters()), lr=c.lr_disc, **c.optimizer_params)
|
|
else:
|
|
optimizer_disc = optimizer_disc(model_disc.parameters(), lr=c.lr_disc, **c.optimizer_params)
|
|
|
|
# schedulers
|
|
scheduler_gen = None
|
|
scheduler_disc = None
|
|
if "lr_scheduler_gen" in c:
|
|
scheduler_gen = getattr(torch.optim.lr_scheduler, c.lr_scheduler_gen)
|
|
scheduler_gen = scheduler_gen(optimizer_gen, **c.lr_scheduler_gen_params)
|
|
if "lr_scheduler_disc" in c:
|
|
scheduler_disc = getattr(torch.optim.lr_scheduler, c.lr_scheduler_disc)
|
|
scheduler_disc = scheduler_disc(optimizer_disc, **c.lr_scheduler_disc_params)
|
|
|
|
if args.restore_path:
|
|
print(f" > Restoring from {os.path.basename(args.restore_path)}...")
|
|
checkpoint = torch.load(args.restore_path, map_location="cpu")
|
|
try:
|
|
print(" > Restoring Generator Model...")
|
|
model_gen.load_state_dict(checkpoint["model"])
|
|
print(" > Restoring Generator Optimizer...")
|
|
optimizer_gen.load_state_dict(checkpoint["optimizer"])
|
|
print(" > Restoring Discriminator Model...")
|
|
model_disc.load_state_dict(checkpoint["model_disc"])
|
|
print(" > Restoring Discriminator Optimizer...")
|
|
optimizer_disc.load_state_dict(checkpoint["optimizer_disc"])
|
|
# restore schedulers if it is a continuing training.
|
|
if args.continue_path != "":
|
|
if "scheduler" in checkpoint and scheduler_gen is not None:
|
|
print(" > Restoring Generator LR Scheduler...")
|
|
scheduler_gen.load_state_dict(checkpoint["scheduler"])
|
|
# NOTE: Not sure if necessary
|
|
scheduler_gen.optimizer = optimizer_gen
|
|
if "scheduler_disc" in checkpoint and scheduler_disc is not None:
|
|
print(" > Restoring Discriminator LR Scheduler...")
|
|
scheduler_disc.load_state_dict(checkpoint["scheduler_disc"])
|
|
scheduler_disc.optimizer = optimizer_disc
|
|
if c.lr_scheduler_disc == "ExponentialLR":
|
|
scheduler_disc.last_epoch = checkpoint["epoch"]
|
|
except RuntimeError:
|
|
# restore only matching layers.
|
|
print(" > Partial model initialization...")
|
|
model_dict = model_gen.state_dict()
|
|
model_dict = set_init_dict(model_dict, checkpoint["model"], c)
|
|
model_gen.load_state_dict(model_dict)
|
|
|
|
model_dict = model_disc.state_dict()
|
|
model_dict = set_init_dict(model_dict, checkpoint["model_disc"], c)
|
|
model_disc.load_state_dict(model_dict)
|
|
del model_dict
|
|
|
|
# reset lr if not countinuining training.
|
|
if args.continue_path == "":
|
|
for group in optimizer_gen.param_groups:
|
|
group["lr"] = c.lr_gen
|
|
|
|
for group in optimizer_disc.param_groups:
|
|
group["lr"] = c.lr_disc
|
|
|
|
print(f" > Model restored from step {checkpoint['step']:d}", flush=True)
|
|
args.restore_step = checkpoint["step"]
|
|
else:
|
|
args.restore_step = 0
|
|
|
|
# DISTRUBUTED
|
|
if num_gpus > 1:
|
|
model_gen = DDP_th(model_gen, device_ids=[args.rank])
|
|
model_disc = DDP_th(model_disc, device_ids=[args.rank])
|
|
|
|
num_params = count_parameters(model_gen)
|
|
print(" > Generator has {} parameters".format(num_params), flush=True)
|
|
num_params = count_parameters(model_disc)
|
|
print(" > Discriminator has {} parameters".format(num_params), flush=True)
|
|
|
|
if args.restore_step == 0 or not args.best_path:
|
|
best_loss = float("inf")
|
|
print(" > Starting with inf best loss.")
|
|
else:
|
|
print(" > Restoring best loss from " f"{os.path.basename(args.best_path)} ...")
|
|
best_loss = torch.load(args.best_path, map_location="cpu")["model_loss"]
|
|
print(f" > Starting with best loss of {best_loss}.")
|
|
keep_all_best = c.get("keep_all_best", False)
|
|
keep_after = c.get("keep_after", 10000) # void if keep_all_best False
|
|
|
|
global_step = args.restore_step
|
|
for epoch in range(0, c.epochs):
|
|
c_logger.print_epoch_start(epoch, c.epochs)
|
|
_, global_step = train(
|
|
model_gen,
|
|
criterion_gen,
|
|
optimizer_gen,
|
|
model_disc,
|
|
criterion_disc,
|
|
optimizer_disc,
|
|
scheduler_gen,
|
|
scheduler_disc,
|
|
ap,
|
|
global_step,
|
|
epoch,
|
|
)
|
|
eval_avg_loss_dict = evaluate(model_gen, criterion_gen, model_disc, criterion_disc, ap, global_step, epoch)
|
|
c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
|
|
target_loss = eval_avg_loss_dict[c.target_loss]
|
|
best_loss = save_best_model(
|
|
target_loss,
|
|
best_loss,
|
|
model_gen,
|
|
optimizer_gen,
|
|
scheduler_gen,
|
|
model_disc,
|
|
optimizer_disc,
|
|
scheduler_disc,
|
|
global_step,
|
|
epoch,
|
|
OUT_PATH,
|
|
keep_all_best=keep_all_best,
|
|
keep_after=keep_after,
|
|
model_losses=eval_avg_loss_dict,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args, c, OUT_PATH, AUDIO_PATH, c_logger, tb_logger = init_training(sys.argv)
|
|
try:
|
|
main(args)
|
|
except KeyboardInterrupt:
|
|
remove_experiment_folder(OUT_PATH)
|
|
try:
|
|
sys.exit(0)
|
|
except SystemExit:
|
|
os._exit(0) # pylint: disable=protected-access
|
|
except Exception: # pylint: disable=broad-except
|
|
remove_experiment_folder(OUT_PATH)
|
|
traceback.print_exc()
|
|
sys.exit(1)
|