coqui-tts/models/tacotrongst.py

98 lines
4.4 KiB
Python

# coding: utf-8
import torch
from torch import nn
from TTS.layers.tacotron import Encoder, Decoder, PostCBHG
from TTS.layers.gst_layers import GST
from TTS.utils.generic_utils import sequence_mask
from TTS.models.tacotron import Tacotron
class TacotronGST(Tacotron):
def __init__(self,
num_chars,
num_speakers,
r=5,
linear_dim=1025,
mel_dim=80,
memory_size=5,
attn_win=False,
attn_norm="sigmoid",
prenet_type="original",
prenet_dropout=True,
forward_attn=False,
trans_agent=False,
forward_attn_mask=False,
location_attn=True,
separate_stopnet=True):
super().__init__(num_chars,
num_speakers,
r,
linear_dim,
mel_dim,
memory_size,
attn_win,
attn_norm,
prenet_type,
prenet_dropout,
forward_attn,
trans_agent,
forward_attn_mask,
location_attn,
separate_stopnet)
gst_embedding_dim = 256
decoder_dim = 512 if num_speakers > 1 else 256
proj_speaker_dim = 80 if num_speakers > 1 else 0
self.decoder = Decoder(decoder_dim, mel_dim, r, memory_size, attn_win,
attn_norm, prenet_type, prenet_dropout,
forward_attn, trans_agent, forward_attn_mask,
location_attn, separate_stopnet, proj_speaker_dim)
self.gst = GST(num_mel=80, num_heads=4,
num_style_tokens=10, embedding_dim=gst_embedding_dim)
def forward(self, characters, text_lengths, mel_specs, speaker_ids=None):
B = characters.size(0)
mask = sequence_mask(text_lengths).to(characters.device)
inputs = self.embedding(characters)
self._init_states()
self.compute_speaker_embedding(speaker_ids)
if self.num_speakers > 1:
inputs = self._add_speaker_embedding(inputs,
self.speaker_embeddings)
encoder_outputs = self.encoder(inputs)
if self.num_speakers > 1:
encoder_outputs = self._add_speaker_embedding(encoder_outputs,
self.speaker_embeddings)
gst_outputs = self.gst(mel_specs)
encoder_outputs = self._add_speaker_embedding(
encoder_outputs, gst_outputs)
mel_outputs, alignments, stop_tokens = self.decoder(
encoder_outputs, mel_specs, mask, self.speaker_embeddings_projected)
mel_outputs = mel_outputs.view(B, -1, self.mel_dim)
linear_outputs = self.postnet(mel_outputs)
linear_outputs = self.last_linear(linear_outputs)
return mel_outputs, linear_outputs, alignments, stop_tokens
def inference(self, characters, speaker_ids=None, style_mel=None):
B = characters.size(0)
inputs = self.embedding(characters)
self._init_states()
self.compute_speaker_embedding(speaker_ids)
if self.num_speakers > 1:
inputs = self._add_speaker_embedding(inputs,
self.speaker_embeddings)
encoder_outputs = self.encoder(inputs)
if self.num_speakers > 1:
encoder_outputs = self._add_speaker_embedding(encoder_outputs,
self.speaker_embeddings)
if style_mel is not None:
gst_outputs = self.gst(style_mel)
gst_outputs = gst_outputs.expand(-1, encoder_outputs.size(1), -1)
encoder_outputs = self._add_speaker_embedding(encoder_outputs,
gst_outputs)
mel_outputs, alignments, stop_tokens = self.decoder.inference(
encoder_outputs, self.speaker_embeddings_projected)
mel_outputs = mel_outputs.view(B, -1, self.mel_dim)
linear_outputs = self.postnet(mel_outputs)
linear_outputs = self.last_linear(linear_outputs)
return mel_outputs, linear_outputs, alignments, stop_tokens