coqui-tts/TTS/tts/models/glow_tts.py

216 lines
9.4 KiB
Python

import math
import torch
from torch import nn
from torch.nn import functional as F
from TTS.tts.layers.glow_tts.encoder import Encoder
from TTS.tts.layers.glow_tts.decoder import Decoder
from TTS.tts.utils.generic_utils import sequence_mask
from TTS.tts.layers.glow_tts.monotonic_align import maximum_path, generate_path
class GlowTts(nn.Module):
"""Glow TTS models from https://arxiv.org/abs/2005.11129"""
def __init__(self,
num_chars,
hidden_channels,
hidden_channels_ffn,
hidden_channels_dp,
out_channels,
num_heads=2,
num_layers_enc=6,
dropout_p=0.1,
num_flow_blocks_dec=12,
kernel_size_dec=5,
dilation_rate=5,
num_block_layers=4,
dropout_p_dec=0.,
num_speakers=0,
c_in_channels=0,
num_splits=4,
num_sqz=1,
sigmoid_scale=False,
rel_attn_window_size=None,
input_length=None,
mean_only=False,
hidden_channels_enc=None,
hidden_channels_dec=None,
use_encoder_prenet=False,
encoder_type="transformer",
external_speaker_embedding_dim=None):
super().__init__()
self.num_chars = num_chars
self.hidden_channels = hidden_channels
self.hidden_channels_ffn = hidden_channels_ffn
self.hidden_channels_dp = hidden_channels_dp
self.out_channels = out_channels
self.num_heads = num_heads
self.num_layers_enc = num_layers_enc
self.dropout_p = dropout_p
self.num_flow_blocks_dec = num_flow_blocks_dec
self.kernel_size_dec = kernel_size_dec
self.dilation_rate = dilation_rate
self.num_block_layers = num_block_layers
self.dropout_p_dec = dropout_p_dec
self.num_speakers = num_speakers
self.c_in_channels = c_in_channels
self.num_splits = num_splits
self.num_sqz = num_sqz
self.sigmoid_scale = sigmoid_scale
self.rel_attn_window_size = rel_attn_window_size
self.input_length = input_length
self.mean_only = mean_only
self.hidden_channels_enc = hidden_channels_enc
self.hidden_channels_dec = hidden_channels_dec
self.use_encoder_prenet = use_encoder_prenet
self.noise_scale = 0.66
self.length_scale = 1.
self.external_speaker_embedding_dim = external_speaker_embedding_dim
# if is a multispeaker and c_in_channels is 0, set to 256
if num_speakers > 1:
if self.c_in_channels == 0 and not self.external_speaker_embedding_dim:
self.c_in_channels = 512
elif self.external_speaker_embedding_dim:
self.c_in_channels = self.external_speaker_embedding_dim
self.encoder = Encoder(num_chars,
out_channels=out_channels,
hidden_channels=hidden_channels,
hidden_channels_ffn=hidden_channels_ffn,
hidden_channels_dp=hidden_channels_dp,
encoder_type=encoder_type,
num_heads=num_heads,
num_layers=num_layers_enc,
dropout_p=dropout_p,
rel_attn_window_size=rel_attn_window_size,
mean_only=mean_only,
use_prenet=use_encoder_prenet,
c_in_channels=self.c_in_channels)
self.decoder = Decoder(out_channels,
hidden_channels_dec or hidden_channels,
kernel_size_dec,
dilation_rate,
num_flow_blocks_dec,
num_block_layers,
dropout_p=dropout_p_dec,
num_splits=num_splits,
num_sqz=num_sqz,
sigmoid_scale=sigmoid_scale,
c_in_channels=self.c_in_channels)
if num_speakers > 1 and not external_speaker_embedding_dim:
# speaker embedding layer
self.emb_g = nn.Embedding(num_speakers, self.c_in_channels)
nn.init.uniform_(self.emb_g.weight, -0.1, 0.1)
@staticmethod
def compute_outputs(attn, o_mean, o_log_scale, x_mask):
# compute final values with the computed alignment
y_mean = torch.matmul(
attn.squeeze(1).transpose(1, 2), o_mean.transpose(1, 2)).transpose(
1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
y_log_scale = torch.matmul(
attn.squeeze(1).transpose(1, 2), o_log_scale.transpose(
1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
# compute total duration with adjustment
o_attn_dur = torch.log(1 + torch.sum(attn, -1)) * x_mask
return y_mean, y_log_scale, o_attn_dur
def forward(self, x, x_lengths, y=None, y_lengths=None, attn=None, g=None):
"""
Shapes:
x: B x T
x_lenghts: B
y: B x C x T
y_lengths: B
g: B x C or B
"""
y_max_length = y.size(2)
# norm speaker embeddings
if g is not None:
if self.external_speaker_embedding_dim:
g = F.normalize(g).unsqueeze(-1)
else:
g = F.normalize(self.emb_g(g)).unsqueeze(-1)# [b, h, 1]
# embedding pass
o_mean, o_log_scale, o_dur_log, x_mask = self.encoder(x,
x_lengths,
g=g)
# drop redisual frames wrt num_sqz and set y_lengths.
y, y_lengths, y_max_length, attn = self.preprocess(
y, y_lengths, y_max_length, None)
# create masks
y_mask = torch.unsqueeze(sequence_mask(y_lengths, y_max_length),
1).to(x_mask.dtype)
attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2)
# decoder pass
z, logdet = self.decoder(y, y_mask, g=g, reverse=False)
# find the alignment path
with torch.no_grad():
o_scale = torch.exp(-2 * o_log_scale)
logp1 = torch.sum(-0.5 * math.log(2 * math.pi) - o_log_scale,
[1]).unsqueeze(-1) # [b, t, 1]
logp2 = torch.matmul(o_scale.transpose(1, 2), -0.5 *
(z**2)) # [b, t, d] x [b, d, t'] = [b, t, t']
logp3 = torch.matmul((o_mean * o_scale).transpose(1, 2),
z) # [b, t, d] x [b, d, t'] = [b, t, t']
logp4 = torch.sum(-0.5 * (o_mean**2) * o_scale,
[1]).unsqueeze(-1) # [b, t, 1]
logp = logp1 + logp2 + logp3 + logp4 # [b, t, t']
attn = maximum_path(logp,
attn_mask.squeeze(1)).unsqueeze(1).detach()
y_mean, y_log_scale, o_attn_dur = self.compute_outputs(
attn, o_mean, o_log_scale, x_mask)
attn = attn.squeeze(1).permute(0, 2, 1)
return z, logdet, y_mean, y_log_scale, attn, o_dur_log, o_attn_dur
@torch.no_grad()
def inference(self, x, x_lengths, g=None):
if g is not None:
if self.external_speaker_embedding_dim:
g = F.normalize(g).unsqueeze(-1)
else:
g = F.normalize(self.emb_g(g)).unsqueeze(-1) # [b, h]
# embedding pass
o_mean, o_log_scale, o_dur_log, x_mask = self.encoder(x,
x_lengths,
g=g)
# compute output durations
w = (torch.exp(o_dur_log) - 1) * x_mask * self.length_scale
w_ceil = torch.ceil(w)
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
y_max_length = None
# compute masks
y_mask = torch.unsqueeze(sequence_mask(y_lengths, y_max_length),
1).to(x_mask.dtype)
attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2)
# compute attention mask
attn = generate_path(w_ceil.squeeze(1),
attn_mask.squeeze(1)).unsqueeze(1)
y_mean, y_log_scale, o_attn_dur = self.compute_outputs(
attn, o_mean, o_log_scale, x_mask)
z = (y_mean + torch.exp(y_log_scale) * torch.randn_like(y_mean) *
self.noise_scale) * y_mask
# decoder pass
y, logdet = self.decoder(z, y_mask, g=g, reverse=True)
attn = attn.squeeze(1).permute(0, 2, 1)
return y, logdet, y_mean, y_log_scale, attn, o_dur_log, o_attn_dur
def preprocess(self, y, y_lengths, y_max_length, attn=None):
if y_max_length is not None:
y_max_length = (y_max_length // self.num_sqz) * self.num_sqz
y = y[:, :, :y_max_length]
if attn is not None:
attn = attn[:, :, :, :y_max_length]
y_lengths = (y_lengths // self.num_sqz) * self.num_sqz
return y, y_lengths, y_max_length, attn
def store_inverse(self):
self.decoder.store_inverse()