coqui-tts/TTS/bin/compute_statistics.py

90 lines
2.9 KiB
Python
Executable File

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import argparse
import glob
import os
import numpy as np
from tqdm import tqdm
from TTS.tts.datasets.preprocess import load_meta_data
from TTS.utils.audio import AudioProcessor
from TTS.utils.io import load_config
def main():
"""Run preprocessing process."""
parser = argparse.ArgumentParser(description="Compute mean and variance of spectrogtram features.")
parser.add_argument(
"--config_path", type=str, required=True, help="TTS config file path to define audio processin parameters."
)
parser.add_argument("--out_path", type=str, required=True, help="save path (directory and filename).")
args = parser.parse_args()
# load config
CONFIG = load_config(args.config_path)
CONFIG.audio["signal_norm"] = False # do not apply earlier normalization
CONFIG.audio["stats_path"] = None # discard pre-defined stats
# load audio processor
ap = AudioProcessor(**CONFIG.audio)
# load the meta data of target dataset
if "data_path" in CONFIG.keys():
dataset_items = glob.glob(os.path.join(CONFIG.data_path, "**", "*.wav"), recursive=True)
else:
dataset_items = load_meta_data(CONFIG.datasets)[0] # take only train data
print(f" > There are {len(dataset_items)} files.")
mel_sum = 0
mel_square_sum = 0
linear_sum = 0
linear_square_sum = 0
N = 0
for item in tqdm(dataset_items):
# compute features
wav = ap.load_wav(item if isinstance(item, str) else item[1])
linear = ap.spectrogram(wav)
mel = ap.melspectrogram(wav)
# compute stats
N += mel.shape[1]
mel_sum += mel.sum(1)
linear_sum += linear.sum(1)
mel_square_sum += (mel ** 2).sum(axis=1)
linear_square_sum += (linear ** 2).sum(axis=1)
mel_mean = mel_sum / N
mel_scale = np.sqrt(mel_square_sum / N - mel_mean ** 2)
linear_mean = linear_sum / N
linear_scale = np.sqrt(linear_square_sum / N - linear_mean ** 2)
output_file_path = args.out_path
stats = {}
stats["mel_mean"] = mel_mean
stats["mel_std"] = mel_scale
stats["linear_mean"] = linear_mean
stats["linear_std"] = linear_scale
print(f" > Avg mel spec mean: {mel_mean.mean()}")
print(f" > Avg mel spec scale: {mel_scale.mean()}")
print(f" > Avg linear spec mean: {linear_mean.mean()}")
print(f" > Avg lienar spec scale: {linear_scale.mean()}")
# set default config values for mean-var scaling
CONFIG.audio["stats_path"] = output_file_path
CONFIG.audio["signal_norm"] = True
# remove redundant values
del CONFIG.audio["max_norm"]
del CONFIG.audio["min_level_db"]
del CONFIG.audio["symmetric_norm"]
del CONFIG.audio["clip_norm"]
stats["audio_config"] = CONFIG.audio
np.save(output_file_path, stats, allow_pickle=True)
print(f" > stats saved to {output_file_path}")
if __name__ == "__main__":
main()