coqui-tts/TTS/utils/synthesizer.py

260 lines
10 KiB
Python

import time
from typing import List
import numpy as np
import pysbd
import torch
from TTS.tts.utils.generic_utils import setup_model
from TTS.tts.utils.speakers import SpeakerManager
# pylint: disable=unused-wildcard-import
# pylint: disable=wildcard-import
from TTS.tts.utils.synthesis import synthesis, trim_silence
from TTS.tts.utils.text import make_symbols, phonemes, symbols
from TTS.utils.audio import AudioProcessor
from TTS.utils.io import load_config
from TTS.vocoder.utils.generic_utils import interpolate_vocoder_input, setup_generator
class Synthesizer(object):
def __init__(
self,
tts_checkpoint: str,
tts_config_path: str,
tts_speakers_file: str = "",
vocoder_checkpoint: str = "",
vocoder_config: str = "",
encoder_checkpoint: str = "",
encoder_config: str = "",
use_cuda: bool = False,
) -> None:
"""General 🐸 TTS interface for inference. It takes a tts and a vocoder
model and synthesize speech from the provided text.
The text is divided into a list of sentences using `pysbd` and synthesize
speech on each sentence separately.
If you have certain special characters in your text, you need to handle
them before providing the text to Synthesizer.
TODO: set the segmenter based on the source language
Args:
tts_checkpoint (str): path to the tts model file.
tts_config_path (str): path to the tts config file.
vocoder_checkpoint (str, optional): path to the vocoder model file. Defaults to None.
vocoder_config (str, optional): path to the vocoder config file. Defaults to None.
encoder_checkpoint (str, optional): path to the speaker encoder model file. Defaults to `""`,
encoder_config (str, optional): path to the speaker encoder config file. Defaults to `""`,
use_cuda (bool, optional): enable/disable cuda. Defaults to False.
"""
self.tts_checkpoint = tts_checkpoint
self.tts_config_path = tts_config_path
self.tts_speakers_file = tts_speakers_file
self.vocoder_checkpoint = vocoder_checkpoint
self.vocoder_config = vocoder_config
self.encoder_checkpoint = encoder_checkpoint
self.encoder_config = encoder_config
self.use_cuda = use_cuda
self.tts_model = None
self.vocoder_model = None
self.speaker_manager = None
self.num_speakers = 0
self.tts_speakers = {}
self.speaker_embedding_dim = 0
self.seg = self._get_segmenter("en")
self.use_cuda = use_cuda
if self.use_cuda:
assert torch.cuda.is_available(), "CUDA is not availabe on this machine."
self._load_tts(tts_checkpoint, tts_config_path, use_cuda)
self.output_sample_rate = self.tts_config.audio["sample_rate"]
if vocoder_checkpoint:
self._load_vocoder(vocoder_checkpoint, vocoder_config, use_cuda)
self.output_sample_rate = self.vocoder_config.audio["sample_rate"]
@staticmethod
def _get_segmenter(lang: str):
"""get the sentence segmenter for the given language.
Args:
lang (str): target language code.
Returns:
[type]: [description]
"""
return pysbd.Segmenter(language=lang, clean=True)
def _load_speakers(self, speaker_file: str) -> None:
"""Load the SpeakerManager to organize multi-speaker TTS. It loads the speakers meta-data and the speaker
encoder if it is defined.
Args:
speaker_file (str): path to the speakers meta-data file.
"""
print("Loading speakers ...")
self.speaker_manager = SpeakerManager(
encoder_model_path=self.encoder_checkpoint, encoder_config_path=self.encoder_config
)
self.speaker_manager.load_x_vectors_file(self.tts_config.get("external_speaker_embedding_file", speaker_file))
self.num_speakers = self.speaker_manager.num_speakers
self.speaker_embedding_dim = self.speaker_manager.x_vector_dim
def _load_tts(self, tts_checkpoint: str, tts_config_path: str, use_cuda: bool) -> None:
"""Load the TTS model.
Args:
tts_checkpoint (str): path to the model checkpoint.
tts_config_path (str): path to the model config file.
use_cuda (bool): enable/disable CUDA use.
"""
# pylint: disable=global-statement
global symbols, phonemes
self.tts_config = load_config(tts_config_path)
self.use_phonemes = self.tts_config.use_phonemes
self.ap = AudioProcessor(verbose=False, **self.tts_config.audio)
if "characters" in self.tts_config.keys():
symbols, phonemes = make_symbols(**self.tts_config.characters)
if self.use_phonemes:
self.input_size = len(phonemes)
else:
self.input_size = len(symbols)
if self.tts_config.use_speaker_embedding is True:
self._load_speakers(self.tts_speakers_file)
self.tts_model = setup_model(
self.input_size,
num_speakers=self.num_speakers,
c=self.tts_config,
speaker_embedding_dim=self.speaker_embedding_dim,
)
self.tts_model.load_checkpoint(self.tts_config, tts_checkpoint, eval=True)
if use_cuda:
self.tts_model.cuda()
def _load_vocoder(self, model_file: str, model_config: str, use_cuda: bool) -> None:
"""Load the vocoder model.
Args:
model_file (str): path to the model checkpoint.
model_config (str): path to the model config file.
use_cuda (bool): enable/disable CUDA use.
"""
self.vocoder_config = load_config(model_config)
self.vocoder_ap = AudioProcessor(verbose=False, **self.vocoder_config["audio"])
self.vocoder_model = setup_generator(self.vocoder_config)
self.vocoder_model.load_checkpoint(self.vocoder_config, model_file, eval=True)
if use_cuda:
self.vocoder_model.cuda()
def split_into_sentences(self, text) -> List[str]:
"""Split give text into sentences.
Args:
text (str): input text in string format.
Returns:
List[str]: list of sentences.
"""
return self.seg.segment(text)
def save_wav(self, wav: List[int], path: str) -> None:
"""Save the waveform as a file.
Args:
wav (List[int]): waveform as a list of values.
path (str): output path to save the waveform.
"""
wav = np.array(wav)
self.ap.save_wav(wav, path, self.output_sample_rate)
def tts(self, text: str, speaker_idx: str = "", speaker_wav=None, style_wav=None) -> List[int]:
"""🐸 TTS magic. Run all the models and generate speech.
Args:
text (str): input text.
speaker_idx (str, optional): spekaer id for multi-speaker models. Defaults to "".
speaker_wav ():
style_wav ([type], optional): style waveform for GST. Defaults to None.
Returns:
List[int]: [description]
"""
start_time = time.time()
wavs = []
sens = self._split_into_sentences(text)
print(" > Text splitted to sentences.")
print(sens)
# get the speaker embedding from the saved x_vectors.
if speaker_idx and isinstance(speaker_idx, str):
speaker_embedding = self.speaker_manager.get_x_vectors_by_speaker(speaker_idx)[0]
else:
speaker_embedding = None
# compute a new x_vector from the given clip.
if speaker_wav is not None:
speaker_embedding = self.speaker_manager.compute_x_vector_from_clip(speaker_wav)
use_gl = self.vocoder_model is None
for sen in sens:
# synthesize voice
waveform, _, _, mel_postnet_spec, _, _ = synthesis(
model=self.tts_model,
text=sen,
CONFIG=self.tts_config,
use_cuda=self.use_cuda,
ap=self.ap,
speaker_id=None,
style_wav=style_wav,
truncated=False,
enable_eos_bos_chars=self.tts_config.enable_eos_bos_chars,
use_griffin_lim=use_gl,
speaker_embedding=speaker_embedding,
)
if not use_gl:
# denormalize tts output based on tts audio config
mel_postnet_spec = self.ap.denormalize(mel_postnet_spec.T).T
device_type = "cuda" if self.use_cuda else "cpu"
# renormalize spectrogram based on vocoder config
vocoder_input = self.vocoder_ap.normalize(mel_postnet_spec.T)
# compute scale factor for possible sample rate mismatch
scale_factor = [
1,
self.vocoder_config["audio"]["sample_rate"] / self.ap.sample_rate,
]
if scale_factor[1] != 1:
print(" > interpolating tts model output.")
vocoder_input = interpolate_vocoder_input(scale_factor, vocoder_input)
else:
vocoder_input = torch.tensor(vocoder_input).unsqueeze(0) # pylint: disable=not-callable
# run vocoder model
# [1, T, C]
waveform = self.vocoder_model.inference(vocoder_input.to(device_type))
if self.use_cuda and not use_gl:
waveform = waveform.cpu()
if not use_gl:
waveform = waveform.numpy()
waveform = waveform.squeeze()
# trim silence
waveform = trim_silence(waveform, self.ap)
wavs += list(waveform)
wavs += [0] * 10000
# compute stats
process_time = time.time() - start_time
audio_time = len(wavs) / self.tts_config.audio["sample_rate"]
print(f" > Processing time: {process_time}")
print(f" > Real-time factor: {process_time / audio_time}")
return wavs