coqui-tts/TTS/bin/compute_attention_masks.py

170 lines
6.2 KiB
Python

"""Compute attention masks from pre-trained Tacotron or Tacotron2 models.
Sample run on LJSpeech dataset.
>>>> CUDA_VISIBLE_DEVICES="0" python TTS/bin/compute_attention_masks.py \
--model_path /home/erogol/Cluster/ljspeech-dcattn-December-14-2020_11+10AM-9d0e8c7/checkpoint_100000.pth.tar \
--config_path /home/erogol/Cluster/ljspeech-dcattn-December-14-2020_11+10AM-9d0e8c7/config.json --dataset ljspeech \
--dataset_metafile /home/erogol/Data/LJSpeech-1.1/metadata.csv \
--data_path /home/erogol/Data/LJSpeech-1.1/ \
--batch_size 16 \
--use_cuda true
"""
import argparse
import importlib
import os
import numpy as np
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from TTS.tts.datasets.TTSDataset import MyDataset
from TTS.tts.utils.generic_utils import setup_model
from TTS.tts.utils.io import load_checkpoint
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
from TTS.utils.audio import AudioProcessor
from TTS.utils.io import load_config
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Extract attention masks from trained Tacotron models.')
parser.add_argument('--model_path',
type=str,
help='Path to Tacotron or Tacotron2 model file ')
parser.add_argument(
'--config_path',
type=str,
required=True,
help='Path to config file for training.',
)
parser.add_argument('--dataset',
type=str,
default='',
help='Dataset from TTS.tts.dataset.preprocess.')
parser.add_argument(
'--dataset_metafile',
type=str,
default='',
help='Dataset metafile inclusing file paths with transcripts.')
parser.add_argument(
'--data_path',
type=str,
default='',
help='Defines the data path. It overwrites config.json.')
parser.add_argument('--output_path',
type=str,
help='path for training outputs.',
default='')
parser.add_argument('--output_folder',
type=str,
default='',
help='folder name for training outputs.')
parser.add_argument('--use_cuda',
type=bool,
default=False,
help="enable/disable cuda.")
parser.add_argument(
'--batch_size',
default=16,
type=int,
help='Batch size for the model. Use batch_size=1 if you have no CUDA.')
args = parser.parse_args()
C = load_config(args.config_path)
ap = AudioProcessor(**C.audio)
# if the vocabulary was passed, replace the default
if 'characters' in C.keys():
symbols, phonemes = make_symbols(**C.characters)
# load the model
num_chars = len(phonemes) if C.use_phonemes else len(symbols)
# TODO: handle multi-speaker
model = setup_model(num_chars, num_speakers=0, c=C)
model, _ = load_checkpoint(model, args.model_path, None, args.use_cuda)
model.eval()
# data loader
preprocessor = importlib.import_module('TTS.tts.datasets.preprocess')
preprocessor = getattr(preprocessor, args.dataset)
meta_data = preprocessor(args.data_path, args.dataset_metafile)
dataset = MyDataset(model.decoder.r,
C.text_cleaner,
compute_linear_spec=False,
ap=ap,
meta_data=meta_data,
tp=C.characters if 'characters' in C.keys() else None,
add_blank=C['add_blank'] if 'add_blank' in C.keys() else False,
use_phonemes=C.use_phonemes,
phoneme_cache_path=C.phoneme_cache_path,
phoneme_language=C.phoneme_language,
enable_eos_bos=C.enable_eos_bos_chars)
dataset.sort_items()
loader = DataLoader(dataset,
batch_size=args.batch_size,
num_workers=4,
collate_fn=dataset.collate_fn,
shuffle=False,
drop_last=False)
# compute attentions
file_paths = []
with torch.no_grad():
for data in tqdm(loader):
# setup input data
text_input = data[0]
text_lengths = data[1]
linear_input = data[3]
mel_input = data[4]
mel_lengths = data[5]
stop_targets = data[6]
item_idxs = data[7]
# dispatch data to GPU
if args.use_cuda:
text_input = text_input.cuda()
text_lengths = text_lengths.cuda()
mel_input = mel_input.cuda()
mel_lengths = mel_lengths.cuda()
mel_outputs, postnet_outputs, alignments, stop_tokens = model.forward(
text_input, text_lengths, mel_input)
alignments = alignments.detach()
for idx, alignment in enumerate(alignments):
item_idx = item_idxs[idx]
# interpolate if r > 1
alignment = torch.nn.functional.interpolate(
alignment.transpose(0, 1).unsqueeze(0),
size=None,
scale_factor=model.decoder.r,
mode='nearest',
align_corners=None,
recompute_scale_factor=None).squeeze(0).transpose(0, 1)
# remove paddings
alignment = alignment[:mel_lengths[idx], :text_lengths[idx]].cpu().numpy()
# set file paths
wav_file_name = os.path.basename(item_idx)
align_file_name = os.path.splitext(wav_file_name)[0] + '.npy'
file_path = item_idx.replace(wav_file_name, align_file_name)
# save output
file_paths.append([item_idx, file_path])
np.save(file_path, alignment)
# ourpur metafile
metafile = os.path.join(args.data_path, "metadata_attn_mask.txt")
with open(metafile, "w") as f:
for p in file_paths:
f.write(f"{p[0]}|{p[1]}\n")
print(f" >> Metafile created: {metafile}")