medix-ai/www/html/_plugins/medix.py

196 lines
7.4 KiB
Python

from langchain_openai import AzureOpenAIEmbeddings, AzureOpenAI, AzureChatOpenAI
from langchain_ollama import OllamaEmbeddings, OllamaLLM
from langchain_core.messages import HumanMessage, AIMessage
from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate
import os
import json
import transport
# from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
import cms
import uuid
from multiprocessing import Process
import pandas as pd
import copy
# from gtts import gTTS
import io
import requests
# USE_OPENAI = os.environ.get('USE_OPENAI',0)
class ILLM :
def __init__(self,**_args) :
self.USE_OPENAI = 'openai' in _args
# self._args = _args['ollama'] if not self.USE_OPENAI else _args['openai']
_path = _args['ollama'] if not self.USE_OPENAI else _args['openai']
f = open(_path)
self._args = json.loads( f.read() )
f.close()
self._prompt = _args['prompt'] if 'prompt' in _args else {}
self._token = _args['token']
def embed(self,_question):
_pointer = AzureOpenAIEmbeddings if self.USE_OPENAI else OllamaEmbeddings
_kwargs = self._args if 'embedding' not in self._args else self._args['embedding']
_handler = _pointer(**_kwargs)
return _handler.embed_query(_question)
def answer(self,_question,_context) :
"""
This function will answer a question against a LLM backend (Ollama or OpenAI)
"""
_pointer = AzureChatOpenAI if self.USE_OPENAI else OllamaLLM
_kwargs = self._args if 'completion' not in self._args else self._args['completion']
_prompt = PromptTemplate(**self._prompt)
_llm = _pointer(**_kwargs)
_memory = ConversationBufferMemory(memory_key=f'{self._token}', return_messages=True)
# chain = LLMChain(llm=_llm,prompt=_prompt,memory=_memory)
# _input = {'context':_context,'question':_question,'chat_history':''}
_memory = ConversationBufferMemory(memory_key=f'{self._token}',return_messages=True)
_schema = 'openai' if self.USE_OPENAI else 'ollama'
pgr = transport.get.reader(label='llm', schema=_schema)
_sql = f"select question, answer::JSON ->>'summary' as answer from llm_logs where token = '{self._token}' ORDER BY _date DESC LIMIT 10"
_ldf = pgr.read(sql=_sql)
_ldf.apply(lambda row: [_memory.chat_memory.add_user_message(row.question), _memory.chat_memory.add_ai_message(row.answer)] , axis=1)
chain = (
RunnablePassthrough.assign(
context=lambda _x: _context,
chat_history=lambda _x : _memory.chat_memory.messages if _memory.chat_memory.messages else []
)
| _prompt
| _llm
| StrOutputParser()
)
chain.invoke({'question':_question})
# _input = json.loads(json.dumps(_input))
resp = chain.invoke( {'question':_question})
# #
# # add question and answers to the _memory object so we can submit them next time around
# # @TODO:
# _memory.chat_memory.add_user_message(_question)
# _memory.chat_memory.add_ai_message(resp)
return {'text':resp}
def schema(self):
return 'openai' if self.USE_OPENAI else 'public'
def documents(self,_vector) :
_schema = 'openai' if self.USE_OPENAI else 'ollama'
pgr = transport.get.reader(label='llm', schema=_schema)
sql = f"""SELECT file, name, page, content, embeddings <-> '{json.dumps(_vector)}' similarity FROM {_schema}.documents
ORDER BY similarity ASC
LIMIT 5
"""
_df = pgr.read(sql=sql)
pgr.close()
return _df
def lookup (self,index:int,token) :
_schema = 'openai' if self.USE_OPENAI else 'ollama'
pgr = transport.get.reader(label='llm', schema=_schema)
index = int(index) + 1
_sql = f"SELECT * FROM (select row_number() over(partition by token) as row_index, answer from llm_logs where token='{token}') as _x where row_index = {index}"
# print (_sql)
_df = pgr.read(sql= _sql)
return _df.answer[0] if _df.shape[0] > 0 else None
@cms.Plugin(mimetype="application/json",method="POST")
def answer (**_args):
_request = _args['request']
_config = _args['config']['system']['source']['llm']
_question = _request.json['question']
token = str(uuid.uuid4()) if 'token' not in _request.json else _request.json['token']
_index = _request.json['index'] if 'index' in _request.json else 0
_config['token'] = token
_llmproc = ILLM(**_config)
#
# Turn the question into a vector and send it to the LLM Server
#
_vector = _llmproc.embed(_question)
_df = _llmproc.documents(_vector)
_pages = _df.apply(lambda row: row.content,axis=1).tolist()
#
# We should also pull the previous questions/answers
# return _df[['name','page','similarity']].to_dict(orient='records')
#
# Let us submit the question to the llm-server
#
resp = _llmproc.answer(_question, _pages)
#
# @TODO :
# - Log questions, answers and sources to see what things are like
_out = {"token":token,"openai":_llmproc.USE_OPENAI,"answer":resp["text"],"documents": _df[["name","page"]].to_dict(orient='records')}
try:
def _logger():
_log = pd.DataFrame([dict(_out,**{'question':_question})])
_log.documents = _df[["name","page"]].to_json(orient='records')
pgw = transport.get.writer (label='llm',table='llm_logs')
pgw.write(_log)
pgw.close()
#
# send the thread
pthread = Process(target=_logger)
pthread.start()
_out['answer'] = json.loads(_out['answer'])
except Exception as e:
print (e)
_context = _args['config']['system']['context'].strip()
_out['stream'] = f'{_context}/api/medix/audio?token={token}&index={_index}'
# _out['index'] = _index
return _out
@cms.Plugin(mimetype="text/plain",method="POST")
def info (**_args):
_config = _args['config']
return 'openai' if 'openai' in _config['system']['source']['llm'] else 'ollama'
@cms.Plugin(mimetype="audio/mpeg",method="GET")
def audio (**_args):
_request = _args['request']
_config = _args['config']['system']['source']['llm']
_index = _request.args['index']
_token = _request.args['token']
_config['token'] = _token
_llmproc = ILLM(**_config)
_stream = _llmproc.lookup(_index,_token)
if _stream.strip().startswith('{') :
_text = json.loads(_stream)['summary']
else:
_text = _stream.strip()
_text = _text.replace('\n',' ').replace('\r',' ').replace(' ',' ').strip()
r = requests.post(f"http://localhost:5002/api/tts",headers={"text":f"""{_text}""","Content-Type":"application/json"},stream=True)
# r = requests.get(f"""http://localhost:5000/api/tts?text={_text}""")
# f = open('/home/steve/tmp/out.wav','w')
# f.write(r.content)
# f.close()
return r.content
# g = gTTS(_text,lang='en')
# return g.stream()
# stream = io.BytesIO()
# for line in g.stream() :
# stream.write(line)
# stream.seek(0)
# return stream #g.stream()