data-maker/data/maker/state/default.py

117 lines
3.9 KiB
Python
Raw Permalink Normal View History

"""
This file contains default functions applied to a data-frame/dataset as pre/post processing jobs.
The functions are organized in a pipeline i.e the data will be applied to each function
Custom functions :
functions must tak 2 arguments (_data,_args) : where _data is a data frame and _arg is a object describing the input parameters
"""
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
def limit(_data,size):
"""
...,{limit:size}
"""
# size = int(_args['limit'])
return _data.iloc[:size]
def format(_data,_schema):
"""
This function enforces a schema against a data-frame, this may or may not work depending on the persistence storage
:_data data-frame containing all data
:_args schema to enforce the data, we are expecting the format as a list of {name,type,description}
"""
return _data
def approximate(_data,_args):
"""
:_args Object of {field:type}
This function will approximate n-fields in the data given it's distribution
"""
_m = {'int':int,'float':float,'integer':int,'double':float}
columns = list(_args.keys())
for _name in columns :
if _name not in _data :
continue
otype = _args[_name]
otype = str if otype not in _m else _m[otype]
_data.loc[:,_name] = np.random.uniform(_data[_name].values).astype(otype)
return _data
def split_date(_data,_args):
"""
This function takes a field and applies the format from other fields
:_data data-frame
:_config configuration entry {column:{format,column:format,type}}
"""
_columns = list(_args.keys())
_m = {'int':int,'float':float,'integer':int,'double':float}
for _name in _columns :
_iname = _args[_name]['column']
_iformat = _args[_name]['format']['in']
_oformat = _args[_name]['format']['out']
_otype = str if 'type' not in _args[_name] else _args[_name]['type']
_data.loc[:,_name] = _data[_iname].apply(lambda _date: datetime.strftime(datetime.strptime(str(_date),_iformat),_oformat)).astype(_otype)
return _data
def newdate(_data,_args):
"""
This function creates a new data on a given column from another
:_data data frame
:_args configuration column:{format,column}
"""
_columns = list(_args.keys())
for _name in _columns :
format = _args[_name]['format']
ROW_COUNT = _data[_name].size
if 'column' in _args[_name] :
srcName = _args[_name]['column']
years = _data[srcName].values
else:
years = np.random.choice(np.arange(datetime.now().year- 90,datetime.now().year),ROW_COUNT)
_data.loc[:,_name] = [ _makedate(year = years[_index],format = format) for _index in np.arange(ROW_COUNT)]
return _data
def _makedate(**_args):
"""
This function creates a new date and applies it to a column
:_data data-frame with columns
:_args arguments for col1:format
"""
_columns = list(_args.keys())
# if _args['year'] in ['',None,np.nan] :
# year = np.random.choice(np.arange(1920,222),1)
# else:
# year = int(_args['year'])
year = int(_args['year'])
offset = _args['offset'] if 'offset' in _args else 0
month = np.random.randint(1,13)
if month == 2:
_end = 28 if year % 4 != 0 else 29
else:
_end = 31 if month in [1,3,5,7,8,10,12] else 30
day = np.random.randint(1,_end)
#-- synthetic date
_date = datetime(year=year,month=month,day=day,minute=0,hour=0,second=0)
FORMAT = '%Y-%m-%d'
if 'format' in _args:
FORMAT = _args['format']
# print ([_name,FORMAT, _date.strftime(FORMAT)])
r = []
if offset :
r = [_date.strftime(FORMAT)]
for _delta in offset :
_date = _date + timedelta(_delta)
r.append(_date.strptime(FORMAT))
return r
else:
return _date.strftime(FORMAT)