data-maker/data/WGAN.py

294 lines
12 KiB
Python
Raw Permalink Normal View History

2019-10-08 18:14:15 +00:00
import tensorflow as tf
from tensorflow.contrib.layers import l2_regularizer
import numpy as np
import time
import os
2019-12-12 17:04:41 +00:00
import pandas as pd
2019-10-08 18:14:15 +00:00
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
#### id of gpu to use
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
#### training data
#### shape=(n_sample, n_code=854)
2019-12-12 17:04:41 +00:00
REAL = None #np.load('') #--diagnosis codes (binary)
2019-10-08 18:14:15 +00:00
#### demographic for training data
#### shape=(n_sample, 6)
#### if sample_x is male, then LABEL[x,0]=1, else LABEL[x,1]=1
#### if sample_x's is within 0-17, then LABEL[x,2]=1
#### elif sample_x's is within 18-44, then LABEL[x,3]=1
#### elif sample_x's is within 45-64, then LABEL[x,4]=1
#### elif sample_x's is within 64-, then LABEL[x,5]=1
2019-12-12 17:04:41 +00:00
LABEL = None #np.load('') #-- demographics 0,5 set it to 1,0,0,0,0,0
2019-10-08 18:14:15 +00:00
#### training parameters
NUM_GPUS = 1
BATCHSIZE_PER_GPU = 2000
TOTAL_BATCHSIZE = BATCHSIZE_PER_GPU * NUM_GPUS
2019-12-12 17:04:41 +00:00
STEPS_PER_EPOCH = 256 #int(np.load('ICD9/train.npy').shape[0] / 2000)
2019-10-08 18:14:15 +00:00
g_structure = [128, 128]
2019-12-12 17:04:41 +00:00
d_structure = [854, 256, 128] #-- change 854 to number of diagnosis
2019-10-08 18:14:15 +00:00
z_dim = 128
def _variable_on_cpu(name, shape, initializer=None):
with tf.device('/cpu:0'):
var = tf.get_variable(name, shape, initializer=initializer)
return var
def batchnorm(inputs, name, labels=None, n_labels=None):
mean, var = tf.nn.moments(inputs, [0], keep_dims=True)
shape = mean.shape[1].value
offset_m = _variable_on_cpu(shape=[n_labels,shape], name='offset'+name,
initializer=tf.zeros_initializer)
scale_m = _variable_on_cpu(shape=[n_labels,shape], name='scale'+name,
initializer=tf.ones_initializer)
offset = tf.nn.embedding_lookup(offset_m, labels)
scale = tf.nn.embedding_lookup(scale_m, labels)
result = tf.nn.batch_normalization(inputs, mean, var, offset, scale, 1e-8)
return result
def layernorm(inputs, name, labels=None, n_labels=None):
mean, var = tf.nn.moments(inputs, [1], keep_dims=True)
shape = inputs.shape[1].value
offset_m = _variable_on_cpu(shape=[n_labels,shape], name='offset'+name,
initializer=tf.zeros_initializer)
scale_m = _variable_on_cpu(shape=[n_labels,shape], name='scale'+name,
initializer=tf.ones_initializer)
offset = tf.nn.embedding_lookup(offset_m, labels)
scale = tf.nn.embedding_lookup(scale_m, labels)
result = tf.nn.batch_normalization(inputs, mean, var, offset, scale, 1e-8)
return result
def input_fn():
features_placeholder = tf.placeholder(shape=REAL.shape, dtype=tf.float32)
labels_placeholder = tf.placeholder(shape=LABEL.shape, dtype=tf.float32)
dataset = tf.data.Dataset.from_tensor_slices((features_placeholder, labels_placeholder))
dataset = dataset.repeat(10000)
dataset = dataset.batch(batch_size=BATCHSIZE_PER_GPU)
dataset = dataset.prefetch(1)
iterator = dataset.make_initializable_iterator()
# next_element = iterator.get_next()
# init_op = iterator.initializer
return iterator, features_placeholder, labels_placeholder
def generator(z, label):
x = z
tmp_dim = z_dim
with tf.variable_scope('G', reuse=tf.AUTO_REUSE, regularizer=l2_regularizer(0.00001)):
for i, dim in enumerate(g_structure[:-1]):
kernel = _variable_on_cpu('W_' + str(i), shape=[tmp_dim, dim])
h1 = batchnorm(tf.matmul(x, kernel), name='cbn' + str(i), labels=label, n_labels=8)
h2 = tf.nn.relu(h1)
x = x + h2
tmp_dim = dim
i = len(g_structure) - 1
kernel = _variable_on_cpu('W_' + str(i), shape=[tmp_dim, g_structure[-1]])
h1 = batchnorm(tf.matmul(x, kernel), name='cbn' + str(i),
labels=label, n_labels=8)
h2 = tf.nn.tanh(h1)
x = x + h2
kernel = _variable_on_cpu('W_' + str(i+1), shape=[128, 854])
bias = _variable_on_cpu('b_' + str(i+1), shape=[854])
x = tf.nn.sigmoid(tf.add(tf.matmul(x, kernel), bias))
return x
def discriminator(x, label):
with tf.variable_scope('D', reuse=tf.AUTO_REUSE, regularizer=l2_regularizer(0.00001)):
for i, dim in enumerate(d_structure[1:]):
kernel = _variable_on_cpu('W_' + str(i), shape=[d_structure[i], dim])
bias = _variable_on_cpu('b_' + str(i), shape=[dim])
x = tf.nn.relu(tf.add(tf.matmul(x, kernel), bias))
x = layernorm(x, name='cln' + str(i), labels=label, n_labels=8)
i = len(d_structure)
kernel = _variable_on_cpu('W_' + str(i), shape=[d_structure[-1], 1])
bias = _variable_on_cpu('b_' + str(i), shape=[1])
y = tf.add(tf.matmul(x, kernel), bias)
return y
def compute_dloss(real, fake, label):
epsilon = tf.random_uniform(
shape=[BATCHSIZE_PER_GPU, 1],
minval=0.,
maxval=1.)
x_hat = real + epsilon * (fake - real)
y_hat_fake = discriminator(fake, label)
y_hat_real = discriminator(real, label)
y_hat = discriminator(x_hat, label)
grad = tf.gradients(y_hat, [x_hat])[0]
slopes = tf.sqrt(tf.reduce_sum(tf.square(grad), 1))
gradient_penalty = tf.reduce_mean((slopes - 1.) ** 2)
all_regs = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
w_distance = -tf.reduce_mean(y_hat_real) + tf.reduce_mean(y_hat_fake)
loss = w_distance + 10 * gradient_penalty + sum(all_regs)
tf.add_to_collection('dlosses', loss)
return w_distance, loss
def compute_gloss(fake, label):
y_hat_fake = discriminator(fake, label)
all_regs = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
loss = -tf.reduce_mean(y_hat_fake) + sum(all_regs)
tf.add_to_collection('glosses', loss)
return loss, loss
def tower_loss(scope, stage, real, label):
label = tf.cast(label, tf.int32)
label = label[:, 1] * 4 + tf.squeeze(
tf.matmul(label[:, 2:], tf.constant([[0], [1], [2], [3]], dtype=tf.int32)))
z = tf.random_normal(shape=[BATCHSIZE_PER_GPU, z_dim])
fake = generator(z, label)
if stage == 'D':
w, loss = compute_dloss(real, fake, label)
losses = tf.get_collection('dlosses', scope)
else:
w, loss = compute_gloss(fake, label)
losses = tf.get_collection('glosses', scope)
total_loss = tf.add_n(losses, name='total_loss')
# loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
# loss_averages_op = loss_averages.apply(losses + [total_loss])
#
# with tf.control_dependencies([loss_averages_op]):
# total_loss = tf.identity(total_loss)
return total_loss, w
def average_gradients(tower_grads):
average_grads = []
for grad_and_vars in zip(*tower_grads):
grads = []
for g, _ in grad_and_vars:
expanded_g = tf.expand_dims(g, 0)
grads.append(expanded_g)
grad = tf.concat(axis=0, values=grads)
grad = tf.reduce_mean(grad, 0)
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads
def graph(stage, opt):
# global_step = tf.get_variable(stage+'_step', [], initializer=tf.constant_initializer(0), trainable=False)
tower_grads = []
per_gpu_w = []
iterator, features_placeholder, labels_placeholder = input_fn()
with tf.variable_scope(tf.get_variable_scope()):
for i in range(NUM_GPUS):
with tf.device('/gpu:%d' % i):
with tf.name_scope('%s_%d' % ('TOWER', i)) as scope:
(real, label) = iterator.get_next()
loss, w = tower_loss(scope, stage, real, label)
tf.get_variable_scope().reuse_variables()
vars_ = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=stage)
grads = opt.compute_gradients(loss, vars_)
tower_grads.append(grads)
per_gpu_w.append(w)
grads = average_gradients(tower_grads)
apply_gradient_op = opt.apply_gradients(grads)
mean_w = tf.reduce_mean(per_gpu_w)
train_op = apply_gradient_op
return train_op, mean_w, iterator, features_placeholder, labels_placeholder
def train(max_epochs, train_dir):
with tf.device('/cpu:0'):
opt_d = tf.train.AdamOptimizer(1e-4)
opt_g = tf.train.AdamOptimizer(1e-4)
train_d, w_distance, iterator_d, features_placeholder_d, labels_placeholder_d = graph('D', opt_d)
train_g, _, iterator_g, features_placeholder_g, labels_placeholder_g = graph('G', opt_g)
saver = tf.train.Saver()
init = tf.global_variables_initializer()
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) as sess:
sess.run(init)
sess.run(iterator_d.initializer,
feed_dict={features_placeholder_d: REAL, labels_placeholder_d: LABEL})
sess.run(iterator_g.initializer,
feed_dict={features_placeholder_g: REAL, labels_placeholder_g: LABEL})
for epoch in range(1, max_epochs + 1):
start_time = time.time()
w_sum = 0
for i in range(STEPS_PER_EPOCH):
for _ in range(2):
_, w = sess.run([train_d, w_distance])
w_sum += w
sess.run(train_g)
duration = time.time() - start_time
assert not np.isnan(w_sum), 'Model diverged with loss = NaN'
format_str = 'epoch: %d, w_distance = %f (%.1f)'
print(format_str % (epoch, -w_sum/(STEPS_PER_EPOCH*2), duration))
if epoch % 500 == 0:
# checkpoint_path = os.path.join(train_dir, 'multi')
saver.save(sess, train_dir, write_meta_graph=False, global_step=epoch)
# saver.save(sess, train_dir, global_step=epoch)
def generate(model_dir, synthetic_dir, demo):
tf.reset_default_graph()
z = tf.random_normal(shape=[BATCHSIZE_PER_GPU, z_dim])
y = tf.placeholder(shape=[BATCHSIZE_PER_GPU, 6], dtype=tf.int32)
label = y[:, 1] * 4 + tf.squeeze(tf.matmul(y[:, 2:], tf.constant([[0], [1], [2], [3]], dtype=tf.int32)))
fake = generator(z, label)
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, model_dir)
for m in range(2):
for n in range(2, 6):
idx1 = (demo[:, m] == 1)
idx2 = (demo[:, n] == 1)
idx = [idx1[j] and idx2[j] for j in range(len(idx1))]
num = np.sum(idx)
nbatch = int(np.ceil(num / BATCHSIZE_PER_GPU))
label_input = np.zeros((nbatch*BATCHSIZE_PER_GPU, 6))
label_input[:, n] = 1
label_input[:, m] = 1
output = []
for i in range(nbatch):
f = sess.run(fake,feed_dict={y: label_input[i*BATCHSIZE_PER_GPU:(i+1)*BATCHSIZE_PER_GPU]})
output.extend(np.round(f))
output = np.array(output)[:num]
np.save(synthetic_dir + str(m) + str(n), output)
if __name__ == '__main__':
#### args_1: number of training epochs
#### args_2: dir to save the trained model
2019-12-12 17:04:41 +00:00
from bridge import Binary
df = pd.read_csv('exports/observation.csv')
cols = 'observation_source_value'
_map,_df = (Binary()).Export(df)
i = np.arange(_map[cols]['start'],_map[cols]['end'])
REAL = _df[:,i]
LABEL = np.arange(0,_df.shape[0])
2019-10-08 18:14:15 +00:00
train(500, '')
#### args_1: dir of trained model
#### args_2: dir to save synthetic data
#### args_3, label of data-to-be-generated
generate('', '', demo=LABEL)