data-maker/data/maker/__init__.py

78 lines
2.8 KiB
Python
Raw Normal View History

"""
(c) 2019 Data Maker, hiplab.mc.vanderbilt.edu
version 1.0.0
This package serves as a proxy to the overall usage of the framework.
This package is designed to generate synthetic data from a dataset from an original dataset using deep learning techniques
@TODO:
- Make configurable GPU, EPOCHS
"""
import pandas as pd
import numpy as np
2020-01-05 05:02:15 +00:00
import data.gan as gan
2020-01-04 03:47:05 +00:00
from transport import factory
def train (**args) :
"""
This function is intended to train the GAN in order to learn about the distribution of the features
:column columns that need to be synthesized (discrete)
:logs where the output of the (location on disk)
:id identifier of the dataset
:data data-frame to be synthesized
:context label of what we are synthesizing
"""
2020-01-04 03:47:05 +00:00
column = args['column']
2020-01-04 03:47:05 +00:00
column_id = args['id']
df = args['data']
logs = args['logs']
real = pd.get_dummies(df[column]).astype(np.float32).values
labels = pd.get_dummies(df[column_id]).astype(np.float32).values
2020-01-07 16:32:36 +00:00
num_gpu = 1 if 'num_gpu' not in args else args['num_gpu']
2020-01-04 03:47:05 +00:00
max_epochs = 10 if 'max_epochs' not in args else args['max_epochs']
context = args['context']
if 'store' in args :
args['store']['args']['doc'] = context
logger = factory.instance(**args['store'])
else:
logger = None
trainer = gan.Train(context=context,max_epochs=max_epochs,num_gpu=num_gpu,real=real,label=labels,column=column,column_id=column_id,logger = logger,logs=logs)
return trainer.apply()
def generate(**args):
"""
This function will generate a synthetic dataset on the basis of a model that has been learnt for the dataset
@return pandas.DataFrame
:data data-frame to be synthesized
:column columns that need to be synthesized (discrete)
:id column identifying an entity
:logs location on disk where the learnt knowledge of the dataset is
"""
df = args['data']
column = args['column']
column_id = args['id']
logs = args['logs']
context = args['context']
num_gpu = 1 if 'num_gpu' not in args else args['num_gpu']
max_epochs = 10 if 'max_epochs' not in args else args['max_epochs']
#
#@TODO:
# If the identifier is not present, we should fine a way to determine or make one
#
#ocolumns= list(set(df.columns.tolist())- set(columns))
values = df[column].unique().tolist()
values.sort()
labels = pd.get_dummies(df[column_id]).astype(np.float32).values
handler = gan.Predict (context=context,label=labels,max_epochs=max_epochs,num_gpu=num_gpu,values=values,column=column,logs=logs)
handler.load_meta(column)
r = handler.apply()
_df = df.copy()
_df[column] = r[column]
return _df