bug fix: uploading data
This commit is contained in:
parent
1dae4ffba8
commit
377e84daea
|
@ -96,14 +96,17 @@ class Learner(Process):
|
|||
#
|
||||
# Below is a source of inefficiency, unfortunately python's type inference doesn't work well in certain cases
|
||||
# - The code below tries to address the issue (Perhaps better suited for the reading components)
|
||||
_log = {}
|
||||
for name in columns :
|
||||
_index = np.random.choice(np.arange(self._df[name].size),5,False)
|
||||
no_value = [type(value) in [int,float,np.int64,np.int32,np.float32,np.float64] for value in self._df[name].values[_index]]
|
||||
no_value = 0 if np.sum(no_value) > 0 else ''
|
||||
|
||||
self._df[name] = self._df[name].fillna(no_value)
|
||||
|
||||
|
||||
|
||||
_log[name] = self._df[name].dtypes.name
|
||||
_log = {'action':'structure','input':_log}
|
||||
self.log(**_log)
|
||||
#
|
||||
# convert the data to binary here ...
|
||||
_schema = self.get_schema()
|
||||
|
@ -293,46 +296,52 @@ class Generator (Learner):
|
|||
name = _item['name']
|
||||
|
||||
if _item['type'].upper() in ['DATE','DATETIME','TIMESTAMP'] :
|
||||
FORMAT = '%Y-%m-%d'
|
||||
FORMAT = '%m-%d-%Y'
|
||||
|
||||
try:
|
||||
#
|
||||
#-- Sometimes data isn't all it's meant to be
|
||||
SIZE = -1
|
||||
if 'format' in self.info and name in self.info['format'] :
|
||||
FORMAT = self.info['format'][name]
|
||||
SIZE = 10
|
||||
elif _item['type'] in ['DATETIME','TIMESTAMP'] :
|
||||
FORMAT = '%Y-%m-%d %H:%M:%S'
|
||||
SIZE = 19
|
||||
# try:
|
||||
# #
|
||||
# #-- Sometimes data isn't all it's meant to be
|
||||
# SIZE = -1
|
||||
# if 'format' in self.info and name in self.info['format'] :
|
||||
# FORMAT = self.info['format'][name]
|
||||
# SIZE = 10
|
||||
# elif _item['type'] in ['DATETIME','TIMESTAMP'] :
|
||||
# FORMAT = '%m-%d-%Y %H:%M:%S'
|
||||
# SIZE = 19
|
||||
|
||||
if SIZE > 0 :
|
||||
# if SIZE > 0 :
|
||||
|
||||
# values = pd.to_datetime(_df[name], format=FORMAT).astype(str)
|
||||
# _df[name] = [_date[:SIZE].strip() for _date in values]
|
||||
|
||||
values = pd.to_datetime(_df[name], format=FORMAT).astype(str)
|
||||
_df[name] = [_date[:SIZE] for _date in values]
|
||||
|
||||
# # _df[name] = _df[name].astype(str)
|
||||
# r[name] = FORMAT
|
||||
# # _df[name] = pd.to_datetime(_df[name], format=FORMAT) #.astype('datetime64[ns]')
|
||||
# if _item['type'] in ['DATETIME','TIMESTAMP']:
|
||||
# pass #;_df[name] = _df[name].fillna('').astype('datetime64[ns]')
|
||||
|
||||
r[name] = FORMAT
|
||||
# _df[name] = pd.to_datetime(_df[name], format=FORMAT) #.astype('datetime64[ns]')
|
||||
if _item['type'] in ['DATETIME','TIMESTAMP']:
|
||||
pass #;_df[name] = _df[name].fillna('').astype('datetime64[ns]')
|
||||
|
||||
except Exception as e:
|
||||
pass
|
||||
finally:
|
||||
pass
|
||||
# except Exception as e:
|
||||
# pass
|
||||
# finally:
|
||||
# pass
|
||||
else:
|
||||
|
||||
#
|
||||
# Because types are inferred on the basis of the sample being processed they can sometimes be wrong
|
||||
# To help disambiguate we add the schema information
|
||||
_type = None
|
||||
|
||||
if 'int' in _df[name].dtypes.name or 'int' in _item['type'].lower():
|
||||
_type = np.int
|
||||
|
||||
elif 'float' in _df[name].dtypes.name or 'float' in _item['type'].lower():
|
||||
_type = np.float
|
||||
if _type :
|
||||
_df[name] = _df[name].fillna(0).replace('',0).astype(_type)
|
||||
|
||||
_df[name] = _df[name].fillna(0).replace('',0).replace('NA',0).replace('nan',0).astype(_type)
|
||||
# else:
|
||||
# _df[name] = _df[name].astype(str)
|
||||
# _df = _df.replace('NaT','').replace('NA','')
|
||||
|
||||
if r :
|
||||
|
@ -373,10 +382,19 @@ class Generator (Learner):
|
|||
_schema = self.get_schema()
|
||||
_schema = [{'name':_item.name,'type':_item.field_type} for _item in _schema]
|
||||
_df = self.format(_df,_schema)
|
||||
_log = [{"name":_schema[i]['name'],"dataframe":_df[_df.columns[i]].dtypes.name,"schema":_schema[i]['type']} for i in np.arange(len(_schema)) ]
|
||||
self.log(**{"action":"consolidate","input":_log})
|
||||
|
||||
# w = transport.factory.instance(doc='observation',provider='mongodb',context='write',db='IOV01_LOGS',auth_file='/home/steve/dev/transport/mongo.json')
|
||||
# w.write(_df)
|
||||
# print (_df[cols])
|
||||
|
||||
writer = transport.factory.instance(**_store)
|
||||
writer.write(_df,schema=_schema)
|
||||
# _df.to_csv('foo.csv')
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
self.log(**{'action':'write','input':{'rows':N,'candidates':len(_candidates)}})
|
||||
class Shuffle(Generator):
|
||||
|
|
Loading…
Reference in New Issue