This commit is contained in:
parent
f65b082fb1
commit
62a665464d
|
@ -604,7 +604,7 @@ class Predict(GNet):
|
||||||
|
|
||||||
# df = pd.DataFrame(np.round(f)).astype(np.int32)
|
# df = pd.DataFrame(np.round(f)).astype(np.int32)
|
||||||
# candidates.append (np.round(_matrix).astype(np.int64))
|
# candidates.append (np.round(_matrix).astype(np.int64))
|
||||||
candidates.append( [np.round(row).astype(int) for row in _matrix])
|
candidates.append(np.array([np.round(row).astype(int) for row in _matrix]))
|
||||||
# return candidates[0] if len(candidates) == 1 else candidates
|
# return candidates[0] if len(candidates) == 1 else candidates
|
||||||
|
|
||||||
return candidates
|
return candidates
|
||||||
|
|
|
@ -111,13 +111,13 @@ class Input :
|
||||||
|
|
||||||
if 'columns' in _args :
|
if 'columns' in _args :
|
||||||
self._columns = _args['columns']
|
self._columns = _args['columns']
|
||||||
else:
|
# else:
|
||||||
#
|
#
|
||||||
# We will look into the count and make a judgment call
|
# We will look into the count and make a judgment call
|
||||||
_df = pd.DataFrame(self.df.apply(lambda col: col.dropna().unique().size )).T
|
_df = pd.DataFrame(self.df.apply(lambda col: col.dropna().unique().size )).T
|
||||||
MIN_SPACE_SIZE = 2
|
MIN_SPACE_SIZE = 2
|
||||||
self._columns = cols if cols else _df.apply(lambda col:None if col[0] == row_count or col[0] < MIN_SPACE_SIZE else col.name).dropna().tolist()
|
self._columns = cols if cols else _df.apply(lambda col:None if col[0] == row_count or col[0] < MIN_SPACE_SIZE else col.name).dropna().tolist()
|
||||||
self._io = _df.to_dict(orient='records')
|
self._io = _df.to_dict(orient='records')
|
||||||
|
|
||||||
def _initdata(self,**_args):
|
def _initdata(self,**_args):
|
||||||
"""
|
"""
|
||||||
|
|
Loading…
Reference in New Issue