bug fix, trainer

This commit is contained in:
Steve Nyemba 2020-03-07 09:16:17 -06:00
parent d72fb6b4e3
commit 718e578401
3 changed files with 55 additions and 17 deletions

View File

@ -581,7 +581,6 @@ class Predict(GNet):
df = pd.DataFrame(np.round(f)).astype(np.int32) df = pd.DataFrame(np.round(f)).astype(np.int32)
p = 0 not in df.sum(axis=1).values p = 0 not in df.sum(axis=1).values
x = df.sum(axis=1).values x = df.sum(axis=1).values
@ -599,7 +598,8 @@ class Predict(GNet):
# #
# In case we are dealing with actual values like diagnosis codes we can perform # In case we are dealing with actual values like diagnosis codes we can perform
# #
_index = [found.index(item) for item in found if item.shape[1] == len(self.values)] N = len(found)
_index = [i for i in range(0,N) if found[i].shape[1] == len(self.values)]
if not _index : if not _index :
INDEX = np.random.choice(np.arange(len(found)),1)[0] INDEX = np.random.choice(np.arange(len(found)),1)[0]
INDEX = ratio.index(np.max(ratio)) INDEX = ratio.index(np.max(ratio))

View File

@ -37,11 +37,14 @@ class ContinuousToDiscrete :
index = BOUNDS.index(row) index = BOUNDS.index(row)
x_[index] = 1 x_[index] = 1
break break
#
# for items in BOUNDS :
# index = BOUNDS.index(items)
return _matrix return _matrix
@staticmethod @staticmethod
def bounds(x,n): def bounds(x,n):
# return np.array_split(x,n)
return list(pd.cut(np.array( np.round(x,ContinuousToDiscrete.ROUND_UP) ),n).categories) return list(pd.cut(np.array( np.round(x,ContinuousToDiscrete.ROUND_UP) ),n).categories)
@ -175,7 +178,8 @@ def generate(**args):
handler.load_meta(col) handler.load_meta(col)
r = handler.apply() r = handler.apply()
BIN_SIZE = 4 if 'bin_size' not in args else int(args['bin_size']) BIN_SIZE = 4 if 'bin_size' not in args else int(args['bin_size'])
_df[col] = ContinuousToDiscrete.continuous(r[col],BIN_SIZE) if 'float' in df[col].dtypes.name or col in CONTINUOUS else r[col] _df[col] = ContinuousToDiscrete.continuous(r[col],BIN_SIZE) if col in CONTINUOUS else r[col]
# _df[col] = r[col]
# #
# @TODO: log basic stats about the synthetic attribute # @TODO: log basic stats about the synthetic attribute
# #

View File

@ -50,11 +50,12 @@ class Components :
""" """
# #
# @TODO: we need to log something here about the parameters being passed # @TODO: we need to log something here about the parameters being passed
pointer = args['reader'] if 'reader' in args else lambda: Components.get(**args) # pointer = args['reader'] if 'reader' in args else lambda: Components.get(**args)
df = pointer() df = args['reader']()
if df.shape[0] == 0 :
print ("CAN NOT TRAIN EMPTY DATASET ") # if df.shape[0] == 0 :
return # print ("CAN NOT TRAIN EMPTY DATASET ")
# return
# #
# Now we can parse the arguments and submit the entire thing to training # Now we can parse the arguments and submit the entire thing to training
# #
@ -113,18 +114,29 @@ class Components :
pass pass
else: else:
print ('.....')
partition = args['partition'] if 'partition' in args else '' partition = args['partition'] if 'partition' in args else ''
log_folder = os.sep.join([log_folder,args['context'],partition]) log_folder = os.sep.join([log_folder,args['context'],str(partition)])
_args = {"batch_size":10000,"logs":log_folder,"context":args['context'],"max_epochs":150,"column":args['columns'],"id":"person_id","logger":logger} _args = {"batch_size":10000,"logs":log_folder,"context":args['context'],"max_epochs":150,"column":args['columns'],"id":"person_id","logger":logger}
_args['max_epochs'] = 150 if 'max_epochs' not in args else int(args['max_epochs']) _args['max_epochs'] = 150 if 'max_epochs' not in args else int(args['max_epochs'])
_args['num_gpu'] = int(args['num_gpu']) if 'num_gpu' in args else 1
os.environ['CUDA_VISIBLE_DEVICES'] = str(args['gpu']) if 'gpu' in args else '0' #
# We ask the process to assume 1 gpu given the system number of GPU and that these tasks can run in parallel
#
if int(args['num_gpu']) > 1 :
_args['gpu'] = int(args['gpu']) if int(args['gpu']) < 8 else np.random.choice(np.arange(8)).astype(int)[0]
else:
_args['gpu'] = 0
_args['num_gpu'] = 1
os.environ['CUDA_VISIBLE_DEVICES'] = str(args['gpu'])
_args['data'] = df _args['data'] = df
# #
# @log : # @log :
# Logging information about the training process for this partition (or not) # Logging information about the training process for this partition (or not)
# #
info = {"rows":df.shape[0],"cols":df.shape[1], "partition":int(partition),"logs":_args['logs']} info = {"rows":df.shape[0],"cols":df.shape[1], "partition":int(partition),"logs":_args['logs']}
logger.write({"module":"train","action":"train","input":info}) logger.write({"module":"train","action":"train","input":info})
@ -291,7 +303,7 @@ if __name__ == '__main__' :
if ''.join(content).isnumeric() : if ''.join(content).isnumeric() :
# #
# we have partitions we are working with # we have partitions we are working with
make = lambda _args: (Components()).generate(_args)
jobs = [] jobs = []
del args['reader'] del args['reader']
columns = DATA.columns.tolist() columns = DATA.columns.tolist()
@ -310,13 +322,13 @@ if __name__ == '__main__' :
args['gpu'] = id args['gpu'] = id
else: else:
args['gpu']=0 args['gpu']=0
make = lambda _args: (Components()).generate(_args)
job = Process(target=make,args=(args,)) job = Process(target=make,args=(args,))
job.name = 'generator # '+str(id) job.name = 'generator # '+str(id)
job.start() job.start()
jobs.append(job) jobs.append(job)
print (["Started ",len(jobs),"generator"+"s" if len(jobs)>1 else "" ]) print (["Started ",len(jobs),"generators" if len(jobs)>1 else "generator" ])
while len(jobs)> 0 : while len(jobs)> 0 :
jobs = [job for job in jobs if job.is_alive()] jobs = [job for job in jobs if job.is_alive()]
time.sleep(2) time.sleep(2)
@ -358,9 +370,31 @@ if __name__ == '__main__' :
# qreader.read(1) # qreader.read(1)
pass pass
else: else:
PART_SIZE = int(args['jobs']) if 'jobs' in args else 8
DATA = reader()
DATA = np.array_split(DATA[args['columns']],PART_SIZE)
jobs = []
for index in range(0,int(args['jobs'])) :
if 'focus' in args and int(args['focus']) != index :
continue
args['partition'] = index
_df = pd.DataFrame(DATA[index],columns=args['columns'])
args['reader'] = lambda: _df
make = lambda _args: (Components()).train(**_args)
job = Process(target=make,args=(args,))
job.name = 'Trainer # ' + str(index)
job.start()
jobs.append(job)
# args['gpu']
print (["Started ",len(jobs),"trainers" if len(jobs)>1 else "trainer" ])
while len(jobs)> 0 :
jobs = [job for job in jobs if job.is_alive()]
time.sleep(2)
# trainer = Components()
# trainer.train(**args)
trainer = Components()
trainer.train(**args)
# Components.train(**args) # Components.train(**args)
#for args in PIPELINE : #for args in PIPELINE :
#args['dataset'] = 'combined20190510' #args['dataset'] = 'combined20190510'