simplify the CLI interface to leverage existing configuration
This commit is contained in:
parent
4c297679dc
commit
89ed5d5d46
|
@ -0,0 +1,159 @@
|
|||
"""
|
||||
This file will perform basic tasks to finalize the GAN process by performing the following :
|
||||
- basic stats & analytics
|
||||
- rebuild io to another dataset
|
||||
"""
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from google.oauth2 import service_account
|
||||
from google.cloud import bigquery as bq
|
||||
from data.params import SYS_ARGS
|
||||
import json
|
||||
class Analytics :
|
||||
"""
|
||||
This class will compile basic analytics about a given dataset i.e compare original/synthetic
|
||||
"""
|
||||
@staticmethod
|
||||
def distribution(**args):
|
||||
context = args['context']
|
||||
df = args['data']
|
||||
#
|
||||
#-- This data frame counts unique values for each feature (space)
|
||||
df_counts = pd.DataFrame(df.apply(lambda col: col.unique().size),columns=['counts']).T # unique counts
|
||||
#
|
||||
#-- Get the distributions for common values
|
||||
#
|
||||
names = [name for name in df_counts.columns.tolist() if name.endswith('_io') == False]
|
||||
ddf = df.apply(lambda col: pd.DataFrame(col.values,columns=[col.name]).groupby([col.name]).size() ).fillna(0)
|
||||
ddf[context] = ddf.index
|
||||
|
||||
pass
|
||||
def distance(**args):
|
||||
"""
|
||||
This function will measure the distance between
|
||||
"""
|
||||
df = args['data']
|
||||
names = [name for name in df_counts.columns.tolist() if name.endswith('_io') == False]
|
||||
class Utils :
|
||||
class get :
|
||||
@staticmethod
|
||||
def config(**args) :
|
||||
contexts = args['contexts'].split(',') if type(args['contexts']) == str else args['contexts']
|
||||
pipeline = args['pipeline']
|
||||
return [ item for item in pipeline if item['context'] in contexts]
|
||||
@staticmethod
|
||||
def sql(**args) :
|
||||
"""
|
||||
This function is intended to build SQL query for the remainder of the table that was not synthesized
|
||||
:config configuration entries
|
||||
:from source of the table name
|
||||
:dataset name of the source dataset
|
||||
|
||||
"""
|
||||
SQL = ["SELECT * FROM :from "]
|
||||
SQL_FILTER = []
|
||||
NO_FILTERS_FOUND = True
|
||||
pipeline = Utils.get.config(**args)
|
||||
REVERSE_QUALIFIER = {'IN':'NOT IN','NOT IN':'IN','=':'<>','<>':'='}
|
||||
for item in pipeline :
|
||||
|
||||
|
||||
if 'filter' in item :
|
||||
if NO_FILTERS_FOUND :
|
||||
NO_FILTERS_FOUND = False
|
||||
SQL += ['WHERE']
|
||||
#
|
||||
# Let us load the filter in the SQL Query
|
||||
FILTER = item['filter']
|
||||
QUALIFIER = REVERSE_QUALIFIER[FILTER['qualifier'].upper()]
|
||||
SQL_FILTER += [" ".join([FILTER['field'], QUALIFIER,'(',FILTER['value'],')'])]
|
||||
src = ".".join([args['dataset'],args['from']])
|
||||
SQL += [" AND ".join(SQL_FILTER)]
|
||||
#
|
||||
# let's pull the field schemas out of the table definition
|
||||
#
|
||||
|
||||
return " ".join(SQL).replace(":from",src)
|
||||
|
||||
|
||||
def mk(**args) :
|
||||
dataset = args['dataset']
|
||||
client = args['client'] if 'client' in args else bq.Client.from_service_account_file(args['private_key'])
|
||||
#
|
||||
# let us see if we have a dataset handy here
|
||||
#
|
||||
datasets = list(client.list_datasets())
|
||||
found = [item for item in datasets if item.dataset_id == dataset]
|
||||
|
||||
if not found :
|
||||
|
||||
return client.create_dataset(dataset)
|
||||
return found[0]
|
||||
|
||||
def move (**args):
|
||||
"""
|
||||
This function will move a table from the synthetic dataset into a designated location
|
||||
This is the simplest case for finalizing a synthetic data set
|
||||
:private_key
|
||||
"""
|
||||
private_key = args['private_key']
|
||||
client = bq.Client.from_service_account_json(private_key)
|
||||
config = Utils.get.config(**args)
|
||||
dataset = args['dataset']
|
||||
SQL = [ ''.join(["SELECT * FROM io.",item['context'],'_full_io']) for item in config]
|
||||
SQL += [Utils.get.sql(**args)]
|
||||
SQL = ('\n UNION ALL \n'.join(SQL).replace(':dataset','io'))
|
||||
|
||||
|
||||
#
|
||||
# At this point we have gathered all the tables in the io folder and we should now see if we need to merge with the remainder from the original table
|
||||
#
|
||||
|
||||
|
||||
|
||||
odataset = mk(dataset=dataset+'_io',client=client)
|
||||
# SQL = "SELECT * FROM io.:context_full_io".replace(':context',context)
|
||||
config = bq.QueryJobConfig()
|
||||
config.destination = client.dataset(odataset.dataset_id).table(args['from'])
|
||||
config.use_query_cache = True
|
||||
config.allow_large_results = True
|
||||
config.priority = 'INTERACTIVE'
|
||||
#
|
||||
#
|
||||
|
||||
schema = client.get_table(client.dataset(args['dataset']).table(args['from'])).schema
|
||||
fields = [" ".join(["CAST (",item.name,"AS",item.field_type.replace("INTEGER","INT64").replace("FLOAT","FLOAT64"),") ",item.name]) for item in schema]
|
||||
SQL = SQL.replace("*"," , ".join(fields))
|
||||
# print (SQL)
|
||||
out = client.query(SQL,location='US',job_config=config)
|
||||
print (dir (out))
|
||||
|
||||
|
||||
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from google.oauth2 import service_account
|
||||
import json
|
||||
|
||||
# path = '../curation-prod.json'
|
||||
# credentials = service_account.Credentials.from_service_account_file(path)
|
||||
# df = pd.read_gbq("SELECT * FROM io.icd10_partial_io",credentials=credentials,dialect='standard')
|
||||
f = open('config.json')
|
||||
config = json.loads(f.read())
|
||||
args = config['pipeline']
|
||||
f.close()
|
||||
|
||||
|
||||
if __name__ == '__main__' :
|
||||
"""
|
||||
Usage :
|
||||
finalize --<move|stats> --contexts <c1,c2,...c3> --from <table>
|
||||
"""
|
||||
if 'move' in SYS_ARGS :
|
||||
table = SYS_ARGS['from']
|
||||
contexts = [item['context'] for item in config['pipeline'] if item['from'] == args['from']]
|
||||
args = dict(config,**{"private_key":"../curation-prod.json"})
|
||||
args = dict(args,**SYS_ARGS)
|
||||
args['contexts'] = contexts
|
||||
move(**args)
|
Loading…
Reference in New Issue