bug fix and enhancement

This commit is contained in:
Steve Nyemba 2019-12-12 11:04:41 -06:00
parent 31c158149f
commit b1796de6fc
18 changed files with 1863 additions and 19 deletions

View File

@ -0,0 +1,6 @@
{
"cells": [],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 2
}

8
Dockerfile Normal file
View File

@ -0,0 +1,8 @@
from ubuntu
RUN ["apt-get","update"]
RUN ["apt-get","upgrade","-y"]
RUN ["apt-get","install","-y","git", "python3-dev","tmux","locales","python3-pip","python3-numpy","python3-pandas","locales"]
RUN ["pip3","install","pandas-gbq","tensorflow"]
RUN ["mkdir","-p","/usr/apps"]
WORKDIR /usr/apps
RUN ["git","clone","https://hiplab.mc.vanderbilt.edu/git/gan.git","aou-gan"]

80
Untitled.ipynb Normal file

File diff suppressed because one or more lines are too long

17
WGAN.py
View File

@ -3,7 +3,7 @@ from tensorflow.contrib.layers import l2_regularizer
import numpy as np import numpy as np
import time import time
import os import os
import pandas as pd
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
#### id of gpu to use #### id of gpu to use
@ -13,7 +13,7 @@ os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
#### training data #### training data
#### shape=(n_sample, n_code=854) #### shape=(n_sample, n_code=854)
REAL = np.load('') REAL = None #np.load('') #--diagnosis codes (binary)
#### demographic for training data #### demographic for training data
#### shape=(n_sample, 6) #### shape=(n_sample, 6)
@ -22,16 +22,16 @@ REAL = np.load('')
#### elif sample_x's is within 18-44, then LABEL[x,3]=1 #### elif sample_x's is within 18-44, then LABEL[x,3]=1
#### elif sample_x's is within 45-64, then LABEL[x,4]=1 #### elif sample_x's is within 45-64, then LABEL[x,4]=1
#### elif sample_x's is within 64-, then LABEL[x,5]=1 #### elif sample_x's is within 64-, then LABEL[x,5]=1
LABEL = np.load('') LABEL = None #np.load('') #-- demographics 0,5 set it to 1,0,0,0,0,0
#### training parameters #### training parameters
NUM_GPUS = 1 NUM_GPUS = 1
BATCHSIZE_PER_GPU = 2000 BATCHSIZE_PER_GPU = 2000
TOTAL_BATCHSIZE = BATCHSIZE_PER_GPU * NUM_GPUS TOTAL_BATCHSIZE = BATCHSIZE_PER_GPU * NUM_GPUS
STEPS_PER_EPOCH = int(np.load('ICD9/train.npy').shape[0] / 2000) STEPS_PER_EPOCH = 256 #int(np.load('ICD9/train.npy').shape[0] / 2000)
g_structure = [128, 128] g_structure = [128, 128]
d_structure = [854, 256, 128] d_structure = [854, 256, 128] #-- change 854 to number of diagnosis
z_dim = 128 z_dim = 128
def _variable_on_cpu(name, shape, initializer=None): def _variable_on_cpu(name, shape, initializer=None):
@ -277,6 +277,13 @@ def generate(model_dir, synthetic_dir, demo):
if __name__ == '__main__': if __name__ == '__main__':
#### args_1: number of training epochs #### args_1: number of training epochs
#### args_2: dir to save the trained model #### args_2: dir to save the trained model
from bridge import Binary
df = pd.read_csv('exports/observation.csv')
cols = 'observation_source_value'
_map,_df = (Binary()).Export(df)
i = np.arange(_map[cols]['start'],_map[cols]['end'])
REAL = _df[:,i]
LABEL = np.arange(0,_df.shape[0])
train(500, '') train(500, '')
#### args_1: dir of trained model #### args_1: dir of trained model

View File

@ -23,13 +23,12 @@ if len(sys.argv) > 1:
value = None value = None
if sys.argv[i].startswith('--'): if sys.argv[i].startswith('--'):
key = sys.argv[i].replace('-','') key = sys.argv[i].replace('-','')
SYS_ARGS[key] = 1
if i + 1 < N: if i + 1 < N:
value = sys.argv[i + 1] = sys.argv[i+1].strip() value = sys.argv[i + 1] = sys.argv[i+1].strip()
if key and value: if key and value:
SYS_ARGS[key] = value SYS_ARGS[key] = value
if key == 'context':
SYS_ARGS[key] = ('/'+value).replace('//','/')
i += 2 i += 2
@ -107,7 +106,7 @@ class pseudonym :
# print (df.head()[:5]) # print (df.head()[:5])
# sys.stdout.flush() # sys.stdout.flush()
TABLE_NAME = ".".join([args['dataset']+DATASET_SUFFIX,PSEUDO_TABLENAME]) TABLE_NAME = ".".join([args['dataset']+DATASET_SUFFIX,PSEUDO_TABLENAME])
df.to_gbq(TABLE_NAME,credentials=credentials,if_exists='append') df.to_gbq(TABLE_NAME,credentials=credentials,if_exists='append',chunksize=10000)
# df.to_gbq(TABLE_NAME.replace('.','_pseudo.'),credentials=credentials,if_exists='append') # df.to_gbq(TABLE_NAME.replace('.','_pseudo.'),credentials=credentials,if_exists='append')
class Builder : class Builder :
@ -159,17 +158,28 @@ class Binary :
This function will convert a column into a binary matrix with the value-space representing each column of the resulting matrix This function will convert a column into a binary matrix with the value-space representing each column of the resulting matrix
:column a column vector i.e every item is a row :column a column vector i.e every item is a row
""" """
values = np.unique(column) # values = np.unique(column)
values.sort()
values = column.dropna().unique()
values.sort()
#
# Let's treat the case of missing values i.e nulls
#
row_count,col_count = column.size,values.size row_count,col_count = column.size,values.size
matrix = [ np.zeros(col_count) for i in np.arange(row_count)] matrix = [ np.zeros(col_count) for i in np.arange(row_count)]
# #
# let's create a binary matrix of the feature that was passed in # let's create a binary matrix of the feature that was passed in
# The indices of the matrix are inspired by classical x,y axis # The indices of the matrix are inspired by classical x,y axis
if col_count > 0 and values.size > 1:
for yi in np.arange(row_count) : for yi in np.arange(row_count) :
value = column[yi] value = column[yi]
xi = np.where(values == value)[0][0] #-- column index if value not in values :
continue
xi = np.where(values == value)
xi = xi[0][0] #-- column index
matrix[yi][xi] = 1 matrix[yi][xi] = 1
return matrix return matrix
@ -180,7 +190,9 @@ class Binary :
""" """
# #
# This will give us a map of how each column was mapped to a bitstream # This will give us a map of how each column was mapped to a bitstream
_map = df.apply(lambda column: self.__stream(column.values),axis=0)
_map = df.fillna(np.nan).apply(lambda column: self.__stream(column),axis=0)
# #
# We will merge this to have a healthy matrix # We will merge this to have a healthy matrix
_matrix = _map.apply(lambda row: list(list(itertools.chain(*row.values.tolist()))),axis=1) _matrix = _map.apply(lambda row: list(list(itertools.chain(*row.values.tolist()))),axis=1)
@ -198,7 +210,7 @@ class Binary :
_m[name] = {"start":beg,"end":end} _m[name] = {"start":beg,"end":end}
beg = end beg = end
return _m,_matrix return _m,_matrix.astype(np.float32)
def Import(self,df,values,_map): def Import(self,df,values,_map):
""" """
@ -216,8 +228,8 @@ class Binary :
# has_basic = 'dataset' in SYS_ARGS.keys() and 'table' in SYS_ARGS.keys() and 'key' in SYS_ARGS.keys() # has_basic = 'dataset' in SYS_ARGS.keys() and 'table' in SYS_ARGS.keys() and 'key' in SYS_ARGS.keys()
# has_action= 'export' in SYS_ARGS.keys() or 'pseudo' in SYS_ARGS.keys() # has_action= 'export' in SYS_ARGS.keys() or 'pseudo' in SYS_ARGS.keys()
df = pd.DataFrame({"fname":['james','james','steve','kevin','kevin'],"lname":["bond","dean","nyemba",'james','johnson']}) # df = pd.DataFrame({"fname":['james','james','steve','kevin','kevin'],"lname":["bond","dean","nyemba",'james','johnson']})
df['age'] = (np.random.sample(df.shape[0]) * 100).astype(np.int32) # df['age'] = (np.random.sample(df.shape[0]) * 100).astype(np.int32)
if __name__ == '__main__' : if __name__ == '__main__' :
""" """
Run the program from the command line passing the following mandatory arguments Run the program from the command line passing the following mandatory arguments
@ -253,6 +265,7 @@ if __name__ == '__main__' :
builder.process(**SYS_ARGS) builder.process(**SYS_ARGS)
else: else:
print ("") print ("")
print (SYS_ARGS.keys())
print ("has basic ",has_basic) print ("has basic ",has_basic)
print ("has action ",has_action) print ("has action ",has_action)
# pseudonym.apply(table='person',dataset='wgan_original',key='./curation-test-2.json') # pseudonym.apply(table='person',dataset='wgan_original',key='./curation-test-2.json')

BIN
bridge.pyc Normal file

Binary file not shown.

12
curation-prod.json Normal file
View File

@ -0,0 +1,12 @@
{
"type": "service_account",
"project_id": "aou-res-curation-prod",
"private_key_id": "ecbf77975c5b7b1f4d4b1680bf67a5e0fd11dfaf",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDcDBFIIOYtSlKU\njA5xBaRYk6+jccisNrvfBT3Lue9Kqy6ad35V+gUGqZ18bIKAgziQy8m5Iiw5VDFm\nZslN4yUFy05g0k+XY0HYq2rqeMeThH9pQ/xfN6XsOy8ED9eONzvnhuX2Jbevm9qr\n0xSIAkFsBYGNs+NjgU4fSmLfptAt2rVs19BI1qRPVBBzA640+hWIATVqr0ibnpE7\ndl7ONzWPWgmgHfhu2A1MjYO5obNJ4NyZ8Y86aAa7N098r+388QGX3XN2I9rWfKIj\nUGEpapmEKwnb8zC92v9GaT2qfbO2vdNsRYE930LGmxlmW+Ji7YO5FRaitvuk2iMU\n7g8d/GZZAgMBAAECggEAIUXi3Bb7byhAne0ipuTtQaaNRafoKeA53sJ+Yl6aaB5D\n1QASFqKQXX5KzbxjrFaLOFvURB3+dWm9cYhD0rbwy3Q/RQUwG0pbM83RxCQgu3Xq\nxSpOUECMIpEdbh4OIFdKQ9tiTOrNoGxu75HiliFPLqwTd6+Wh96Ox0z6b+qbqn8S\nqcEK0JQXvzC1BbR7vhsySIFP5hz8F0JThm94B3tiClzsixGCk6wydXuPs64x3rGt\nZ57dxBQBUVxYmaI3LQ/1cm7nv7uqfbUHDZrpLzE6/AevP5iNyzY1bkdUJ45mj2Ay\nWhqW9ftOhyRE9C2djPcopgrjRPbH/U0491tTLuc2XQKBgQDyp08o7mEz97/aGWmr\nNj3+QjBwNoDkdiR3qUrgohLwSNahSpiPv9+yjGvfXHQUxNyJfJ2Zei5bSTCjqKTk\nNq4QmvO4gsEhABOuqU0U0NlrpGSj0amwrCrqh7gxG/tnSuVEOzEKbY9g0CaXlg1O\nbJtP8yvicJc7m/5RxLKI8LoW1QKBgQDoJnKv8+JZc/16FI/4bU8BwUUHRiazWDIt\n9aCt63h+Fs6PAAFuGo04lobQEukbwU3EB63jWKCaxGJkjh+/lLkTelzRlVyVs0N0\nOb9WL4vYtwMrmtXKPfqKmJS81qwlLHA0+YBeE56uElwyFMAEsIIRb4YjffZd3Cy9\nT19cMSmbdQKBgBo046HCDRF1wmylrfnlw9BACcc0u7rw34Nk70dPecgltbh5u/xa\ndqhr7gKTk53inQbkRIkc3wDQ6MXkItra5PW6JnRY+s67mWSVuFN1MuYjPRNMQ41n\nKsNloQj8wqwnNJen5OYBayjDkkdw10MPC78YvjaYflzbvh3KppWPmil5AoGBAKID\nWxyynrABA9A0E3mzh2TZJbx6171n+rUaa8WUxKVycztXLKhTfWUVoAYMfISzNftt\nxIwaKRN5pJU6nquMNlGCns5hZ5jN33B4cLDMQ9O9fUfsKfGXqYcaDwtu4fqbdb9y\ntIRzOtWO2KrW0l8zc8KJS1rvqIU+iDah8xIa+UeVAoGBAKagVX0AN1RwoRg7LKdZ\n9eMQeYfaeVrfbxMDqEluEJzAQbvRoPZ75UNMre+vTOHLZuPF9uT+N71amgkKaL1T\nV1qWzNBU0bvpD9xvdCJWmypoccV2by1Nj2rPll5wfg1CPhmEQuNB30YLOTAws9Tc\nmb0kWAwnL39cUQyXJ5zBGd3K\n-----END PRIVATE KEY-----\n",
"client_email": "aou-res-curation-prod@appspot.gserviceaccount.com",
"client_id": "",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/aou-res-curation-prod%40appspot.gserviceaccount.com"
}

12
curation-test-2.json Normal file
View File

@ -0,0 +1,12 @@
{
"type": "service_account",
"project_id": "aou-res-curation-test",
"private_key_id": "be9cb7427212dea882379d125530f5339ba854a7",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvAIBADANBgkqhkiG9w0BAQEFAASCBKYwggSiAgEAAoIBAQCljt1hxwqInD2U\nKLv9SQX08tE0+APKzOH4Cw3vZt495aAlmKpsRt0ze3HdobouOQXzySqJZqHqgK3k\n5oqjlXOEFVrupIO5WnujGA3Ln7SP9vK1fjiNeKFvX/W+ePULRsOp1pZts53p5OzU\nS2PU2UowAVip9iJAjTeLpoF4cYjHG1jM4oYIRq8mCtuBNmsNE6peY4lWrlouHIvy\nPKJOAQ0kwEbtxsVfEBYqvcb8X5NSFi4/gwP5y1z8ALjQ3eLJjcqPfsAGI2Lpf7Ah\nM+RbW3rkT0FKCbUjUY1NNhQKguDdzeTGModjGyQxp3Y7qT1LHOvRKIZXb3Ft3f1C\nHyUsytJlAgMBAAECggEAEk8TXS3VlLgFTgOXOUfrGGSwuDU5Y3h3APxlT8rGMdLZ\nfBmUYfcQSBI9zG8x7MyyQ3yaxKk3Uidlk8E0fH9u+qDLS/BLqk2UYLwB7Tk95FyW\nCMuVq3ziCt7HiYdM6jCq5iHCGbhZyApgxTWKgSPVQtZ98gXd/IThgK3VoaFEqWgc\nsVDO/AokZF56luDHzISALh3+LhsoYxerTP43XA4jDv4i/qzmDAwUcBf1mI76qaOZ\nOwoETJre+kaI61ZqVcnGteSVnvfb8Z5e5Gvwtig2akiNbT+E/HeTfQiCTJ9r5dUA\n5U1r4O4Veu0gLENvK4NE0kdn3k6BTLeOljuxIXzHPQKBgQDk2/0SdhZYScAsXts+\nFl3FJbVU409szRX/uUWtBjD2sIm9GRYmBv07Kk3MV+Egh8e9Ps/wjb6fxbhlEVGf\nvbPuR9pn4Ci+fllH7TWsy1atcyZaZXD22/eHOXOjiE+rFUAfO94fXIxVXtB0yuxe\nf+zQ6rltpn5ttZBQghYsm0weawKBgQC5MRftZqf+d7AzP5Pj4mPUhxmwrHNWaryw\nHAqer4X9kjS/zBlHWQjdqA9rpFgXzaETRY5sbC9ef2FgCG2mSAYEvyYBA4L8t71s\ntUO/v3VgSs0xheOnAI8RFnq5g5Bbzd4IPZB+dEq9gPph+P/QLCFpRX0LFzhOwkrx\nvaicvMFmbwKBgHFL5tEI3K8Ac76Dhw4JjIpYzJgln+BA9y8NzUyG0B6P7uBKVwik\nVSDBJJqQtsaf8WXifpab1U7LVynRlRL7muPPdnQOKJ2FdzWAXR4Z2+MqKkZ+CZpr\n8vJiorjGdoo/jurnfGMSMfbhZVksTC/MLLSQPxPlZJlzVOpGPCwBBYHZAoGALmKE\nirresxcJdByljzuiI5ZfMehPz0JW1ol/g3WVSwj2219kqYE8fkBc9GoqgnPHt4sB\nfFiwmKuxGRujUzXRBBlYjIJzqZbgBD12pa1v2dmCgbf2aFr0eqQ1wweX/daXmVrK\nOVIpckO+8xEqCdsz1ylHg6KiQN/bY6dMd02z51MCgYAZRr+hutgjPOQEdWujFgkL\noTypuWmqvdQmOj8L0o3wee2D5ScMx7obtoKhYP+FpC4U9xgoImiS9hLL3FurwVNi\n36GEodFO7iTFnBowJFp+COW5xX8ISEc0LVKkFoHyMfXZa+zxFWRTRRRwzmnHGBq+\nRY2vrlcCx36QEcQdwFR72Q==\n-----END PRIVATE KEY-----\n",
"client_email": "aou-res-curation-test@appspot.gserviceaccount.com",
"client_id": "",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/aou-res-curation-test%40appspot.gserviceaccount.com"
}

12
curation-test.json Normal file
View File

@ -0,0 +1,12 @@
{
"type": "service_account",
"project_id": "aou-res-curation-test",
"private_key_id": "1ed8d298e4b5572e7556b2f079133ea04568396a",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCwf6bQeRLpKhlh\nvFIjiZvdu68mm/6x37zmH5jBoCv8fWteUbqSwyPzz3954qLpENvad/ob+ELHMOnU\n9LNgRwKTYNuBpRRPELdh95lF7zmHyat6GRA0Y6ofIU1ScjzJlQlFQ8+PnYNTrpgh\nqOtmgLAbI7S0mMsQodXsZwuPyHW0nf5CCY7gnXuThxmTt46hY7Zd9WCKH7ra+P9W\nqzHRRQyuC/43bQIFuHP1wWUrmnJCbypWcgRQEKfoWyXKVEsNGcbUMYLFOixraQuk\n8mhRgncMe2dR7R2M60Q0fLKAF4CZDfG2N70ACoIY8sFGkXSjFG2rlok7spYwdYIX\nafKQHbZ1AgMBAAECggEAAzb7NfSs/5psACFuFsY3+xFvyF9ZNvcxMx9wzyU/BKg2\n9buKXCFgY12S3+72jBIDcL0ns2CE76jet9zFjNbheQeJTmXp2UjS9kTywaXXIYSI\nWL7h6/pdJZg1ltW/pEvp8WnuewCukC5WO6K4HiCKh9Jq+H3uxCMWfB0iX+BevuC4\n4FEC0eJ6BD5rI8gUr5HO8VtCgxW99dJHgrdx+rRlJEaeY5FwGLW/ITBjsV0S48Pl\nvxcpHWbUCn13tE1EWR0QhFyazUWw8xqdY1+H++ku45pAZuMxYlFGkhssBbVJqYwP\nMjkjy9z4n/xXUVj7iwTWweQ2dvZracKEmBP2szAJkQKBgQDeGXMRJ9UK79Anewm/\nqXQWKzMYzwcWT+1hTfUweL5SMzTjO/tuqMsDqndCeAacpLUOxXjIcINWP/P1+VDH\nIFj8JpQMw86t2JUwMqcmSk44he85wfT3qgoxe6LglQIbWgV6cZY1OKnkuKIln2FW\nlpGdiSRRM430+wN2Fq9YsFRimQKBgQDLcFlBVL0NTC+wlD72I6/dSKeWNpz50epp\ng4qOg3zq7rMa8S/O/m1w3ZFyeAz+E4LA1Mi42MQPr6vhGFPczQgoPboe2rCnIPqR\nnFhkWqLBTk7BgmqnZV1lzrdvosmGscOdfQwnw8gNDe1KjAmPQvdP95qGcYKh5kKu\nxz3P3S74PQKBgAZ9YeJfcpc2OLPeoYNLNUwsiPqxmfhp73rHZ2G6NX17Z5E4QHmU\nTxJVWdTEYxUSrwO2e3gH6Z6MkdlfJqAa7t63Vd4lnpVv3bQh1saEp1J5f2sFot3V\nxyR5A2JimEQqVjykswntFPHM/1fwF00La0faKQiCZCSDbS93LDqANIcJAoGBAJmE\nc2YweuVA+6/lfsmhToHO5OAe4EBI3vq2j+VRZf+nFzMalDhAmPeVy780xqEouf+n\n0rxinzkzGKIpCIfTlPdA9WV5I9tKsKsW70DzgGQdIqM2NiOSA3PjFVvB3Q+ur231\nwilzvU/UlZ8uo7wfDZ+julD/8VMY/nMD2So1v88FAoGACPUobP69SukbZIl4rYLL\nAZEcxlQCOP/2nWGY7spReiIZKqXCkwMElR8r41//Kb6/h0knKlW8NsC2vpvOBgHO\nG7ZYooscHP8v203lPtGykaBA1xeFY5NKD0gGAG+CmSLorM8cYMUv4RXrIOtmAgrG\nXdLo0jPwQXGSTqOdPvNqBi0=\n-----END PRIVATE KEY-----\n",
"client_email": "aou-res-curation-test@appspot.gserviceaccount.com",
"client_id": "",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/aou-res-curation-test%40appspot.gserviceaccount.com"
}

511
exports/observation.csv Normal file
View File

@ -0,0 +1,511 @@
observation_id,person_id,observation_concept_id,observation_date,observation_datetime,observation_type_concept_id,value_as_number,value_as_string,value_as_concept_id,qualifier_concept_id,unit_concept_id,provider_id,visit_occurrence_id,observation_source_value,observation_source_concept_id,unit_source_value,qualifier_source_value,value_source_concept_id,value_source_value,questionnaire_response_id
118208,5557,9425,3823,10549,1331,,16669.0,,,,,8936.0,11839,6242,1849.0,5535.0,,,
112221,5557,1268,8176,4688,1331,,16669.0,,,,,9908.0,7436,6037,1849.0,5535.0,,,
92924,5557,1268,3823,13501,1331,,16669.0,,,,,8043.0,7436,6037,1849.0,5535.0,,,
87525,5557,562,6238,5732,1331,,16669.0,,,,,2539.0,3555,914,1849.0,5535.0,,,
88732,5557,1268,3823,10549,1331,,16669.0,,,,,8936.0,7436,6037,1849.0,5535.0,,,
127541,5230,255,4070,17510,1331,,,5490.0,,,,8823.0,10678,7672,,,,,
143650,665,5987,6705,10269,1331,,,5490.0,,,,6992.0,11454,8747,,,,,
69801,665,8220,11554,17750,1331,,,5490.0,,,,6910.0,4645,7332,,,,,
102810,665,3637,1222,15887,1331,,,5490.0,,,,5139.0,5309,5692,,,,,
143746,665,8499,3363,666,1331,,,5490.0,,,,7948.0,5963,2112,,,,,
70261,665,7654,11258,18677,1331,,,5490.0,,,,12665.0,6282,333,,,,,
40451,665,3637,1330,6520,1331,,,5490.0,,,,5793.0,6548,7716,,,,,
20543,665,6866,9228,15133,1331,,,5490.0,,,,9252.0,11880,1768,,,,,
100742,665,5987,11806,11363,1331,,,5490.0,,,,,4102,192,,,,,
128493,665,3637,9520,13609,1331,,,5490.0,,,,8390.0,5309,5692,,,,,
118347,665,4084,11258,18677,1331,,,5490.0,,,,12665.0,1637,10082,,,,,
70737,665,9675,6995,21994,1331,,,5490.0,,,,8156.0,11592,3413,,,,,
16780,9034,2273,8988,12680,1331,,,5490.0,,,,11630.0,7739,5531,,,,,
48409,9034,2273,8530,10717,1331,,,5490.0,,,,2681.0,7739,5531,,,,,
95301,665,2123,3877,22319,1331,,,5490.0,,,,12932.0,4701,11099,,,,,
109187,665,8499,586,20186,1331,,,5490.0,,,,13320.0,5963,2112,,,,,
131936,665,3637,3019,1916,1331,,,5490.0,,,,326.0,5309,5692,,,,,
11545,665,9675,11258,18677,1331,,,5490.0,,,,12665.0,229,9044,,,,,
45240,665,9675,5659,7261,1331,,,5490.0,,,,3579.0,3906,3214,,,,,
94641,9034,2123,8988,12680,1331,,,5490.0,,,,11630.0,9951,1400,,,,,
61317,665,8499,12397,21443,1331,,,5490.0,,,,7050.0,5963,2112,,,,,
96121,665,5987,11258,18677,1331,,,5490.0,,,,12665.0,271,2597,,,,,
141495,9034,2273,4972,4053,1331,,,5490.0,,,,10150.0,7739,5531,,,,,
46013,665,7230,4975,8765,1331,,,5490.0,,,,8632.0,7140,9976,,,,,
27580,665,6866,10230,22399,1331,,,5490.0,,,,11228.0,11880,1768,,,,,
31663,665,1004,6701,19159,1331,,,5490.0,,,,12712.0,6220,7308,,,,,
53487,665,9425,9168,23137,1331,,,5490.0,,,,3789.0,954,6242,,,,,
96920,665,8499,7684,24162,1331,,,5490.0,,,,2125.0,6421,2112,,,,,
140655,665,566,11289,23244,1331,,,5490.0,,,,8937.0,496,7067,,,,,
22671,665,3637,7814,14867,1331,,,5490.0,,,,3367.0,5309,5692,,,,,
73299,665,5987,11801,10623,1331,,,5490.0,,,,9541.0,8239,8155,,,,,
33464,9034,5772,8988,12680,1331,,,5490.0,,,,11630.0,5293,3180,,,,,
116430,665,8499,9520,13609,1331,,,5490.0,,,,8390.0,6421,2112,,,,,
42612,665,566,11258,18677,1331,,,5490.0,,,,12665.0,496,7067,,,,,
151800,665,2123,6995,21994,1331,,,5490.0,,,,8156.0,8751,11099,,,,,
66963,665,5987,757,20626,1331,,,5490.0,,,,2315.0,11454,8747,,,,,
20955,665,9675,757,20626,1331,,,5490.0,,,,2315.0,229,9044,,,,,
29389,665,6866,9591,9107,1331,,,5490.0,,,,8111.0,11880,1768,,,,,
47723,665,8881,3877,22319,1331,,,5490.0,,,,12932.0,9490,836,,,,,
145483,665,8220,11289,23244,1331,,,5490.0,,,,8937.0,4645,7332,,,,,
148716,665,5987,1387,17146,1331,,,5490.0,,,,1679.0,4102,192,,,,,
60966,665,6866,6217,3474,1331,,,5490.0,,,,7540.0,11880,1768,,,,,
74964,665,8220,6705,10269,1331,,,5490.0,,,,6992.0,4645,7332,,,,,
111786,665,566,757,20626,1331,,,5490.0,,,,2315.0,496,7067,,,,,
41338,665,9675,10799,349,1331,,,5490.0,,,,3164.0,5538,9044,,,,,
27522,665,9675,6705,10269,1331,,,5490.0,,,,6992.0,229,9044,,,,,
64564,665,3637,8188,3756,1331,,,5490.0,,,,3488.0,4974,7184,,,,,
69978,665,7565,6701,19159,1331,,,5490.0,,,,12712.0,293,5494,,,,,
34968,665,3637,7684,24162,1331,,,5490.0,,,,2125.0,5309,5692,,,,,
23218,665,3637,245,13206,1331,,,5490.0,,,,,5309,5692,,,,,
71119,665,8881,2149,3205,1331,,,5490.0,,,,6073.0,9490,836,,,,,
66535,665,566,6705,10269,1331,,,5490.0,,,,6992.0,496,7067,,,,,
65054,665,11121,11258,18677,1331,,,5490.0,,,,12665.0,4843,5773,,,,,
74272,665,566,11554,17750,1331,,,5490.0,,,,6910.0,496,7067,,,,,
110821,665,9675,2960,7987,1331,,,5490.0,,,,3465.0,3906,3214,,,,,
146780,665,3637,12397,21443,1331,,,5490.0,,,,7050.0,6289,5692,,,,,
53661,665,5987,11289,23244,1331,,,5490.0,,,,8937.0,6804,10990,,,,,
115297,9034,3637,10182,380,1331,,,5490.0,,,,9044.0,11463,7184,,,,,
88141,665,8220,11258,18677,1331,,,5490.0,,,,12665.0,4645,7332,,,,,
108101,665,5987,6705,10269,1331,,,5490.0,,,,6992.0,271,2597,,,,,
152503,665,5987,11554,17750,1331,,,5490.0,,,,6910.0,271,2597,,,,,
88754,665,5987,2960,7987,1331,,,5490.0,,,,3465.0,271,2597,,,,,
17476,9034,2273,12445,8047,1331,,,5490.0,,,,13143.0,7739,5531,,,,,
1955,665,3637,3363,666,1331,,,5490.0,,,,7948.0,6289,5692,,,,,
118939,665,3637,10248,5700,1331,,,5490.0,,,,5350.0,6289,5692,,,,,
115691,665,5987,7754,13286,1331,,,5490.0,,,,13355.0,4102,192,,,,,
111900,665,5987,11554,17750,1331,,,5490.0,,,,6910.0,6804,10990,,,,,
99133,665,4351,11554,17750,1331,,,5490.0,,,,6910.0,3158,3294,,,,,
33439,665,4351,10248,5700,1331,,,5490.0,,,,5350.0,10401,2940,,,,,
76750,665,4351,11258,18677,1331,,,5490.0,,,,12665.0,3955,4266,,,,,
101677,665,4351,11554,17750,1331,,,5490.0,,,,6910.0,3955,4266,,,,,
7658,665,4351,757,20626,1331,,,5490.0,,,,2315.0,7938,758,,,,,
8349,665,4351,11289,23244,1331,,,5490.0,,,,8937.0,3955,4266,,,,,
83441,665,4351,2960,7987,1331,,,5490.0,,,,3465.0,3955,4266,,,,,
31987,665,4351,757,20626,1331,,,5490.0,,,,2315.0,3955,4266,,,,,
149415,7552,10002,9293,1136,1331,,,5490.0,,,,13107.0,9301,4502,,,,,
109005,889,3080,2677,11631,1331,,,5490.0,,,,,12081,1503,,,,,
51503,889,255,1957,19548,1331,,,5490.0,,,,,10678,7672,,,,,
92084,584,8881,933,23961,1331,,,5490.0,,,,5399.0,1933,836,,,,,
20482,584,8220,286,19980,1331,,,5490.0,,,,9158.0,2464,7332,,,,,
142288,584,3637,6366,21753,1331,,,5490.0,,,,,6548,7716,,,,,
26495,584,8220,7954,2585,1331,,,5490.0,,,,9965.0,2464,7332,,,,,
44120,889,5772,12734,19047,1331,,,5490.0,,,,,4378,10734,,,,,
25470,584,8220,6297,10755,1331,,,5490.0,,,,9721.0,2464,7332,,,,,
55155,584,8220,12707,5062,1331,,,5490.0,,,,10641.0,2464,7332,,,,,
59236,584,3228,8590,11654,1331,,,5490.0,,,,11500.0,6818,10843,,,,,
51768,584,7973,913,21672,1331,,,5490.0,,,,3441.0,7416,7132,,,,,
46767,889,5987,1789,4216,1331,,,5490.0,,,,,4102,192,,,,,
98773,584,8220,8901,6846,1331,,,5490.0,,,,1663.0,2464,7332,,,,,
102018,889,1815,995,12664,1331,,,5490.0,,,,4139.0,7236,6845,,,,,
16147,889,9425,3510,1739,1331,,,5490.0,,,,3252.0,2685,6242,,,,,
37396,889,4351,4335,5449,1331,,,5490.0,,,,11376.0,2443,7969,,,,,
110428,889,3637,8343,20660,1331,,,5490.0,,,,3918.0,5309,5692,,,,,
11390,889,8609,2960,7987,1331,,,5490.0,,,,,8379,1288,,,,,
18726,584,2123,2873,3314,1331,,,5490.0,,,,7270.0,9951,1400,,,,,
8677,889,5987,2836,20839,1331,,,5490.0,,,,11801.0,4102,192,,,,,
31211,889,5904,1957,19548,1331,,,5490.0,,,,,2790,3686,,,,,
123923,584,8220,693,17394,1331,,,5490.0,,,,,2464,7332,,,,,
88350,584,8220,1675,17892,1331,,,5490.0,,,,1614.0,2464,7332,,,,,
130425,584,8220,11192,21322,1331,,,5490.0,,,,11314.0,4645,7332,,,,,
17957,584,8220,913,21672,1331,,,5490.0,,,,3441.0,2464,7332,,,,,
148169,889,4351,4162,20465,1331,,,5490.0,,,,8503.0,4435,7969,,,,,
46432,889,9425,6584,13541,1331,,,5490.0,,,,6965.0,2685,6242,,,,,
117012,889,4351,765,5507,1331,,,5490.0,,,,12148.0,1376,374,,,,,
127289,889,1815,9018,16763,1331,,,5490.0,,,,9990.0,3899,6845,,,,,
129839,889,8499,7312,24175,1331,,,5490.0,,,,9424.0,6421,2112,,,,,
137161,889,3637,6416,9237,1331,,,5490.0,,,,1274.0,5309,5692,,,,,
86281,889,5987,564,14434,1331,,,5490.0,,,,,4102,192,,,,,
121552,889,9425,12206,19851,1331,,,5490.0,,,,10580.0,2685,6242,,,,,
5523,584,8220,8187,8921,1331,,,5490.0,,,,5043.0,2464,7332,,,,,
131839,584,8220,3520,5888,1331,,,5490.0,,,,10633.0,2464,7332,,,,,
75866,584,2123,6883,20216,1331,,,5490.0,,,,6350.0,8751,11099,,,,,
71809,889,5987,6911,21649,1331,,,5490.0,,,,1570.0,342,192,,,,,
134463,889,10181,3070,14517,1331,,,5490.0,,,,2327.0,10757,6956,,,,,
39004,584,8220,9583,4888,1331,,,5490.0,,,,5606.0,2464,7332,,,,,
89639,889,3637,12206,19851,1331,,,5490.0,,,,10580.0,5309,5692,,,,,
73506,8266,2704,2555,12270,1331,,,5490.0,,,,9705.0,9842,670,,,,,
139715,2487,10289,8577,23785,1331,,,5490.0,,,,2909.0,11400,5264,,,,,
92298,2487,10289,2836,20839,1331,,,5490.0,,,,12203.0,11400,5264,,,,,
112860,2487,10289,5502,18949,1331,,,5490.0,,,,5401.0,11400,5264,,,,,
94341,2487,10289,10960,23341,1331,,,5490.0,,,,12230.0,11400,5264,,,,,
84661,2487,5987,8577,23785,1331,,,5490.0,,,,2909.0,11655,8155,,,,,
127815,8266,2704,8418,22417,1331,,,5490.0,,,,5987.0,9842,670,,,,,
114637,2487,9284,11406,21765,1331,,,5490.0,,,,8760.0,2051,9025,,,,,
120662,8266,2734,2555,12270,1331,,,5490.0,,,,3356.0,6992,3891,,,,,
77654,2487,10289,10543,11301,1331,,,5490.0,,,,5797.0,11400,5264,,,,,
52859,2487,1941,865,18965,1331,,,5490.0,,,,1317.0,10167,10122,,,,,
99667,2487,5987,10402,21256,1331,,,5490.0,,,,4198.0,11655,8155,,,,,
39458,2487,10289,10402,21256,1331,,,5490.0,,,,4198.0,11400,5264,,,,,
137598,2487,2123,7653,5315,1331,,,5490.0,,,,12212.0,8088,8147,,,,,
42479,2487,5987,5502,18949,1331,,,5490.0,,,,5401.0,11655,8155,,,,,
47641,2487,562,7653,5315,1331,,,5490.0,,,,12212.0,9598,914,,,,,
138942,2487,6587,10960,23341,1331,,,5490.0,,,,12230.0,10651,6830,,,,,
3496,2487,10289,12854,1260,1331,,,5490.0,,,,3740.0,11400,5264,,,,,
66663,2487,3637,3502,7058,1331,,,5490.0,,,,7985.0,5309,5692,,,,,
144416,2487,10289,6526,13869,1331,,,5490.0,,,,4204.0,11400,5264,,,,,
150343,229,5248,8255,21747,1331,,,5490.0,,,,5302.0,507,1962,,,,,
52099,229,5987,4310,21923,1331,,,5490.0,,,,7701.0,4102,192,,,,,
121789,229,566,8255,21747,1331,,,5490.0,,,,5302.0,496,7067,,,,,
52153,229,1004,4824,16715,1331,,,5490.0,,,,8138.0,10961,10789,,,,,
95103,229,5987,8913,18400,1331,,,5490.0,,,,9117.0,4102,192,,,,,
102328,229,6847,7047,20430,1331,,,5490.0,,,,3158.0,5605,8226,,,,,
126774,229,7565,4824,16715,1331,,,5490.0,,,,8138.0,776,3975,,,,,
127133,229,4351,8255,21747,1331,,,5490.0,,,,5302.0,9451,8766,,,,,
69764,229,7565,7636,3074,1331,,,5490.0,,,,10449.0,293,5494,,,,,
93154,5895,5987,8255,21747,1331,,,5490.0,,,,,4102,192,,,,,
45928,229,5987,8255,21747,1331,,,5490.0,,,,5302.0,11454,8747,,,,,
9543,229,5987,2633,5260,1331,,,5490.0,,,,7738.0,4102,192,,,,,
41640,229,6810,8396,4809,1331,,,5490.0,,,,7303.0,471,4817,,,,,
10654,229,5987,4014,8773,1331,,,5490.0,,,,8388.0,4102,192,,,,,
16687,229,6810,5258,10596,1331,,,5490.0,,,,4544.0,471,4817,,,,,
25069,229,6810,5534,7595,1331,,,5490.0,,,,7577.0,471,4817,,,,,
137225,229,8598,8255,21747,1331,,,5490.0,,,,5302.0,1179,10074,,,,,
88948,229,4351,8255,21747,1331,,,5490.0,,,,5302.0,7108,6713,,,,,
39653,229,1004,8255,21747,1331,,,5490.0,,,,5302.0,854,4938,,,,,
137353,229,5248,4824,16715,1331,,,5490.0,,,,8138.0,3288,5861,,,,,
32231,229,9305,8255,21747,1331,,,5490.0,,,,5302.0,12050,8552,,,,,
48748,229,6810,4619,11842,1331,,,5490.0,,,,,471,4817,,,,,
24139,229,1004,4824,16715,1331,,,5490.0,,,,8138.0,854,4938,,,,,
119203,229,6810,4824,16715,1331,,,5490.0,,,,8138.0,7162,4817,,,,,
37449,229,5044,4824,16715,1331,,,5490.0,,,,8138.0,8452,1985,,,,,
98305,229,5987,8255,21747,1331,,,5490.0,,,,5302.0,271,2597,,,,,
106283,229,5987,564,14434,1331,,,5490.0,,,,316.0,4102,192,,,,,
83001,229,1004,8255,21747,1331,,,5490.0,,,,5302.0,10961,10789,,,,,
42771,229,5987,9913,1154,1331,,,5490.0,,,,4659.0,4102,192,,,,,
139650,229,9305,7636,3074,1331,,,5490.0,,,,10449.0,6002,5633,,,,,
105281,229,6810,12756,8578,1331,,,5490.0,,,,6332.0,471,4817,,,,,
140570,229,3087,11118,13079,1331,,,5490.0,,,,9512.0,9062,3458,,,,,
151531,5895,5987,11997,21650,1331,,,5490.0,,,,11501.0,4102,192,,,,,
58777,229,1004,7636,3074,1331,,,5490.0,,,,10449.0,6220,7308,,,,,
84286,229,1941,7636,3074,1331,,,5490.0,,,,10449.0,10167,10122,,,,,
51431,7508,183,12097,4178,1331,,16669.0,,,,,2792.0,7396,3649,1849.0,5535.0,,,
6859,7508,3575,5313,16218,1331,,16669.0,,,,,2048.0,8641,4813,1849.0,5535.0,,,
122615,7508,9051,5313,16218,1331,,16669.0,,,,,2048.0,5459,8021,1849.0,5535.0,,,
29681,7508,8812,8043,16726,1331,,16669.0,,,,,6360.0,11218,1352,1849.0,5535.0,,,
81739,7508,8006,8043,16726,1331,,16669.0,,,,,6360.0,11570,2035,1849.0,5535.0,,,
75396,7508,1264,12103,21026,1331,,16669.0,,,,,2319.0,294,6737,1849.0,5535.0,,,
1615,7508,5987,5313,16218,1331,,16669.0,,,,,2048.0,971,192,1849.0,5535.0,,,
81559,7508,4351,7788,1933,1331,,16669.0,,,,,9700.0,6346,2294,1849.0,5535.0,,,
142462,7508,4351,12103,21026,1331,,16669.0,,,,,2319.0,6346,2294,1849.0,5535.0,,,
54948,7508,4351,1317,8742,1331,,16669.0,,,,,4893.0,9550,4725,1849.0,5535.0,,,
91359,7508,4351,5313,16218,1331,,16669.0,,,,,2048.0,6346,2294,1849.0,5535.0,,,
102634,2253,5987,11649,9206,1331,,,5490.0,,,,12897.0,342,192,,,,,
57404,2253,5987,12081,20227,1331,,,5490.0,,,,3837.0,4102,192,,,,,
59301,2253,7127,6349,18224,1331,,,5490.0,,,,342.0,5537,6041,,,,,
46314,2253,8644,7278,22139,1331,,,5490.0,,,,5122.0,2352,1040,,,,,
99875,2253,8881,9178,10472,1331,,,5490.0,,,,2495.0,9490,836,,,,,
101072,2253,6743,10798,14751,1331,,,5490.0,,,,9281.0,5140,4357,,,,,
54214,2253,8644,12081,20227,1331,,,5490.0,,,,4620.0,2352,1040,,,,,
29372,2253,5987,7278,22139,1331,,,5490.0,,,,7573.0,4102,192,,,,,
16606,2253,5987,757,20626,1331,,,5490.0,,,,11146.0,4102,192,,,,,
36083,2253,5987,5502,18949,1331,,,5490.0,,,,9128.0,342,192,,,,,
90263,2253,1042,457,8629,1331,,,5490.0,,,,10905.0,10444,3856,,,,,
141677,2253,5622,6349,18224,1331,,,5490.0,,,,342.0,559,1123,,,,,
112438,2253,7973,1690,15078,1331,,,5490.0,,,,9394.0,11760,10316,,,,,
40469,2253,1941,10102,2413,1331,,,5490.0,,,,8328.0,10167,10122,,,,,
61710,2253,5987,9456,2238,1331,,,5490.0,,,,7941.0,4102,192,,,,,
146689,2253,4555,9643,3647,1331,,,5490.0,,,,11276.0,5174,241,,,,,
123770,2253,8644,6203,22276,1331,,,5490.0,,,,4005.0,2352,1040,,,,,
145101,2253,1941,5436,3310,1331,,,5490.0,,,,2108.0,898,10122,,,,,
16732,2253,1941,10245,6616,1331,,,5490.0,,,,11097.0,10167,10122,,,,,
141264,2253,5987,6203,22276,1331,,,5490.0,,,,4005.0,11454,8747,,,,,
33788,2253,2734,457,8629,1331,,,5490.0,,,,10905.0,6992,3891,,,,,
98588,2253,2734,8880,6505,1331,,,5490.0,,,,12136.0,84,6098,,,,,
55856,2253,4351,6349,18224,1331,,,5490.0,,,,342.0,1557,1323,,,,,
90501,2253,4351,1690,15078,1331,,,5490.0,,,,9394.0,1557,1323,,,,,
17854,2253,4351,6349,18224,1331,,,5490.0,,,,342.0,463,7738,,,,,
93949,2253,4351,1690,15078,1331,,,5490.0,,,,9394.0,463,7738,,,,,
83743,2253,4351,12597,22984,1331,,,5490.0,,,,8497.0,463,7738,,,,,
122179,2253,4351,1464,7793,1331,,,5490.0,,,,4455.0,463,7738,,,,,
72134,2253,4351,9643,3647,1331,,,5490.0,,,,11276.0,463,7738,,,,,
82182,2253,4351,4589,9396,1331,,,5490.0,,,,11234.0,463,7738,,,,,
98134,2253,4351,6355,22424,1331,,,5490.0,,,,5801.0,463,7738,,,,,
105276,2253,4351,457,8629,1331,,,5490.0,,,,10905.0,1272,2294,,,,,
80892,2253,4351,1983,18523,1331,,,5490.0,,,,13679.0,463,7738,,,,,
138861,2253,4351,3131,13151,1331,,,5490.0,,,,9955.0,463,7738,,,,,
125680,2253,4351,1464,7793,1331,,,5490.0,,,,4455.0,10344,10492,,,,,
62465,2253,4351,9808,2635,1331,,,5490.0,,,,5887.0,463,7738,,,,,
43261,2253,4351,7015,21437,1331,,,5490.0,,,,8370.0,7216,5174,,,,,
65994,2253,4351,8428,6179,1331,,,5490.0,,,,1370.0,463,7738,,,,,
44338,2253,4351,8579,8565,1331,,,5490.0,,,,5190.0,1557,1323,,,,,
97523,2253,4351,6203,22276,1331,,,5490.0,,,,4005.0,10401,2940,,,,,
88274,2253,4351,1716,23720,1331,,,5490.0,,,,1242.0,7216,5174,,,,,
84947,2253,4351,10804,16846,1331,,,5490.0,,,,7350.0,463,7738,,,,,
78897,2253,4351,2276,12297,1331,,,5490.0,,,,4111.0,463,7738,,,,,
19460,2253,4351,8801,10295,1331,,,5490.0,,,,10979.0,463,7738,,,,,
45054,2253,4351,12840,4293,1331,,,5490.0,,,,2696.0,7457,1323,,,,,
3724,2253,4351,8579,8565,1331,,,5490.0,,,,5190.0,6544,2324,,,,,
88025,2253,4351,9643,3647,1331,,,5490.0,,,,11276.0,4132,10267,,,,,
20599,6920,5987,12639,11106,1331,,,5490.0,,,,3916.0,342,192,,,,,
149124,4834,3962,5830,3432,1331,,,5490.0,,,,7824.0,1636,4542,,,,,
63370,4834,3962,11863,11571,1331,,,5490.0,,,,9856.0,9269,2063,,,,,
60927,4834,4880,8645,5004,1331,,,5490.0,,,,7989.0,8711,5316,,,,,
52404,4834,3962,1463,13009,1331,,,5490.0,,,,12139.0,4275,2063,,,,,
18949,6920,10181,1276,22405,1331,,,5490.0,,,,2705.0,2732,566,,,,,
67625,4834,3962,963,4234,1331,,,5490.0,,,,13601.0,9269,2063,,,,,
51784,4834,3962,1282,18682,1331,,,5490.0,,,,8989.0,4275,2063,,,,,
128512,4834,1004,8645,5004,1331,,,5490.0,,,,7989.0,10961,10789,,,,,
131302,6920,3087,5659,7261,1331,,,5490.0,,,,5010.0,6673,9982,,,,,
24005,4834,1004,8645,5004,1331,,,5490.0,,,,7989.0,854,4938,,,,,
52479,4834,7565,8645,5004,1331,,,5490.0,,,,7989.0,293,5494,,,,,
5760,4834,3080,7073,23818,1331,,,5490.0,,,,1898.0,8631,7975,,,,,
147602,4834,10181,1073,18068,1331,,,5490.0,,,,2651.0,7220,8765,,,,,
10640,4834,10181,9811,22231,1331,,,5490.0,,,,589.0,9884,8765,,,,,
93595,4834,3080,1073,18068,1331,,,5490.0,,,,2651.0,5484,1813,,,,,
16943,6920,2734,12639,11106,1331,,,5490.0,,,,3916.0,1045,5056,,,,,
127327,4834,3962,7853,12266,1331,,,5490.0,,,,11693.0,4275,2063,,,,,
54714,4834,3962,5830,3432,1331,,,5490.0,,,,7824.0,8342,6187,,,,,
60188,4834,225,798,18716,1331,,,5490.0,,,,10891.0,9529,6714,,,,,
113924,4834,3962,11750,20208,1331,,,5490.0,,,,13110.0,1636,4542,,,,,
24149,6920,7565,924,21423,1331,,,5490.0,,,,3325.0,293,5494,,,,,
120692,4834,3962,6041,2660,1331,,,5490.0,,,,4909.0,4275,2063,,,,,
123053,6920,5987,924,21423,1331,,,5490.0,,,,3325.0,342,192,,,,,
78517,4834,3962,9735,13036,1331,,,5490.0,,,,2852.0,4275,2063,,,,,
136540,4834,225,12816,2955,1331,,,5490.0,,,,13282.0,9529,6714,,,,,
56770,4834,5248,8645,5004,1331,,,5490.0,,,,7989.0,7110,9680,,,,,
115892,4834,2495,8645,5004,1331,,,5490.0,,,,7989.0,10328,5186,,,,,
149330,9633,7230,8490,11530,1331,,16669.0,,,,,13068.0,11185,10988,1849.0,5535.0,,,
120230,9633,7230,1947,19476,1331,,16669.0,,,,,6918.0,11185,10988,1849.0,5535.0,,,
118473,9633,4351,3273,21867,1331,,16669.0,,,,,6912.0,5611,3167,1849.0,5535.0,,,
41457,9633,7230,4110,20602,1331,,16669.0,,,,,9771.0,11185,10988,1849.0,5535.0,,,
55276,9633,7230,1947,12291,1331,,16669.0,,,,,4856.0,11185,10988,1849.0,5535.0,,,
42791,7659,4351,11141,10173,1331,,16669.0,,,,,10857.0,6346,2294,1849.0,5535.0,,,
54119,7659,4351,5193,15553,1331,,16669.0,,,,,13571.0,8007,118,1849.0,5535.0,,,
51285,7659,9675,4517,14075,1331,,16669.0,,,,,6033.0,1041,3214,1849.0,5535.0,,,
55583,7659,4351,4517,14075,1331,,16669.0,,,,,6033.0,6346,2294,1849.0,5535.0,,,
152488,10034,10574,12103,14043,1331,,,5490.0,,,,10617.0,7922,1613,,,,,
98325,7659,3600,5193,15553,1331,,16669.0,,,,,13571.0,7600,1586,1849.0,5535.0,,,
136758,2700,255,2965,23642,1331,,,5490.0,,,,966.0,827,10862,,,,,
60119,7659,4351,3795,16087,1331,,16669.0,,,,,12477.0,6346,2294,1849.0,5535.0,,,
11703,2700,8644,3887,183,1331,,,5490.0,,,,6827.0,12129,45,,,,,
95659,2700,10181,2045,18201,1331,,,5490.0,,,,6978.0,2434,9641,,,,,
86997,7659,5987,1264,10453,1331,,16669.0,,,,,7937.0,692,2597,1849.0,5535.0,,,
134716,2700,4351,7671,19255,1331,,,5490.0,,,,10761.0,2498,9470,,,,,
34136,2700,4351,6769,23457,1331,,,5490.0,,,,216.0,2498,9470,,,,,
70662,2700,4351,7938,8240,1331,,,5490.0,,,,5022.0,3870,3127,,,,,
123762,7659,255,3795,16087,1331,,16669.0,,,,,12477.0,10889,7672,1849.0,5535.0,,,
58274,2700,2734,9260,19762,1331,,,5490.0,,,,1426.0,4526,9165,,,,,
148981,2700,3575,3887,183,1331,,,5490.0,,,,6827.0,5361,4813,,,,,
16736,2700,1042,3887,183,1331,,,5490.0,,,,6827.0,10444,3856,,,,,
95110,2700,4351,4122,20791,1331,,,5490.0,,,,1735.0,5236,7272,,,,,
43316,2700,4351,3887,183,1331,,,5490.0,,,,6827.0,7500,2632,,,,,
94283,2700,9433,3887,183,1331,,,5490.0,,,,6827.0,3548,6892,,,,,
72347,2700,4351,11289,23244,1331,,,5490.0,,,,7034.0,3870,3127,,,,,
94264,2700,8644,11697,12815,1331,,,5490.0,,,,7172.0,7817,11228,,,,,
70625,2700,4351,11289,23244,1331,,,5490.0,,,,7034.0,5236,7272,,,,,
118474,2700,4351,11289,23244,1331,,,5490.0,,,,7034.0,7500,2632,,,,,
92735,2700,2734,1463,13009,1331,,,5490.0,,,,8045.0,5513,11371,,,,,
93664,2700,4351,1904,14127,1331,,,5490.0,,,,5893.0,1272,2294,,,,,
126651,2700,4351,5478,3145,1331,,,5490.0,,,,11028.0,5236,7272,,,,,
2601,2700,1296,3887,183,1331,,,5490.0,,,,6827.0,6175,266,,,,,
121941,2700,4351,1904,14127,1331,,,5490.0,,,,5893.0,5236,7272,,,,,
131680,2700,566,1904,14127,1331,,,5490.0,,,,5893.0,496,7067,,,,,
64594,2700,4351,11697,12815,1331,,,5490.0,,,,7172.0,3870,3127,,,,,
140307,2700,4351,2769,16084,1331,,,5490.0,,,,3265.0,1272,2294,,,,,
119028,2700,2734,2965,23642,1331,,,5490.0,,,,4475.0,84,6098,,,,,
32014,2700,4351,5487,9554,1331,,,5490.0,,,,6103.0,2498,9470,,,,,
15371,2700,5987,1904,14127,1331,,,5490.0,,,,5893.0,271,2597,,,,,
42228,2700,2734,10486,18241,1331,,,5490.0,,,,885.0,4526,9165,,,,,
49765,2700,5987,12229,19094,1331,,,5490.0,,,,11759.0,271,2597,,,,,
95955,2700,2734,4392,9298,1331,,,5490.0,,,,13378.0,5513,11371,,,,,
86113,2700,10347,8406,628,1331,,,5490.0,,,,9199.0,9013,2475,,,,,
146880,2700,4351,10496,17766,1331,,,5490.0,,,,264.0,2498,9470,,,,,
31815,2700,4351,2769,16084,1331,,,5490.0,,,,3265.0,10663,9470,,,,,
146126,2700,4351,10496,17766,1331,,,5490.0,,,,264.0,187,7272,,,,,
117743,2700,3493,3887,183,1331,,,5490.0,,,,6827.0,5926,2051,,,,,
50121,2700,10181,11697,12815,1331,,,5490.0,,,,7172.0,514,1799,,,,,
2371,2700,4351,12229,19094,1331,,,5490.0,,,,11759.0,5236,7272,,,,,
127277,2700,566,11289,23244,1331,,,5490.0,,,,7034.0,496,7067,,,,,
33457,2700,4351,12499,4680,1331,,,5490.0,,,,10434.0,9042,2097,,,,,
102325,2700,4351,7671,19255,1331,,,5490.0,,,,10761.0,9042,2097,,,,,
72241,2700,4351,11289,23244,1331,,,5490.0,,,,7034.0,1272,2294,,,,,
105384,2700,5987,10719,8159,1331,,,5490.0,,,,3212.0,342,192,,,,,
15937,2700,4351,10207,21944,1331,,,5490.0,,,,9818.0,9042,2097,,,,,
132531,2700,9675,2769,16084,1331,,,5490.0,,,,3265.0,420,2969,,,,,
62830,2700,4351,2769,16084,1331,,,5490.0,,,,3265.0,11562,2097,,,,,
20912,2700,7699,4122,20791,1331,,,5490.0,,,,1735.0,6864,3621,,,,,
88682,2700,4351,12499,4680,1331,,,5490.0,,,,10434.0,2498,9470,,,,,
77519,2700,4351,10207,21944,1331,,,5490.0,,,,9818.0,2498,9470,,,,,
17620,2700,4351,11697,12815,1331,,,5490.0,,,,7172.0,7500,2632,,,,,
35366,2700,4351,4122,20791,1331,,,5490.0,,,,1735.0,1272,2294,,,,,
18793,2700,10574,11697,12815,1331,,,5490.0,,,,7172.0,5388,1613,,,,,
9423,2700,4351,8447,11940,1331,,,5490.0,,,,7421.0,9042,2097,,,,,
133036,2700,255,1018,20367,1331,,,5490.0,,,,8237.0,827,10862,,,,,
44732,2700,2431,2045,18201,1331,,,5490.0,,,,6978.0,4152,6170,,,,,
107150,2700,4351,7938,8240,1331,,,5490.0,,,,5022.0,5236,7272,,,,,
117279,2700,5987,10496,17766,1331,,,5490.0,,,,264.0,4102,192,,,,,
125689,2700,4351,7938,8240,1331,,,5490.0,,,,5022.0,10663,9470,,,,,
76836,2700,8600,11289,23244,1331,,,5490.0,,,,7034.0,8747,7989,,,,,
7573,2700,566,12229,19094,1331,,,5490.0,,,,11759.0,496,7067,,,,,
94634,2700,9675,12229,19094,1331,,,5490.0,,,,11759.0,420,2969,,,,,
32886,2700,4351,12229,19094,1331,,,5490.0,,,,11759.0,10663,9470,,,,,
104258,2700,4351,9465,481,1331,,,5490.0,,,,7767.0,2498,9470,,,,,
30325,2700,5987,7938,8240,1331,,,5490.0,,,,5022.0,271,2597,,,,,
75482,2700,5987,12206,19851,1331,,,5490.0,,,,11913.0,342,192,,,,,
75245,2700,4351,4122,20791,1331,,,5490.0,,,,1735.0,3870,3127,,,,,
4022,2700,4351,12748,18235,1331,,,5490.0,,,,149.0,9042,2097,,,,,
71386,2700,4351,1994,9287,1331,,,5490.0,,,,12875.0,5236,7272,,,,,
139341,2700,4351,6769,23457,1331,,,5490.0,,,,216.0,9042,2097,,,,,
132605,7659,4351,8374,14572,1331,,16669.0,,,,,12842.0,527,8825,1849.0,5535.0,,,
96863,2700,4351,8447,11940,1331,,,5490.0,,,,7421.0,2498,9470,,,,,
93150,2700,5987,11289,23244,1331,,,5490.0,,,,7034.0,271,2597,,,,,
29482,2700,10347,12229,19094,1331,,,5490.0,,,,2544.0,2339,2475,,,,,
116558,2700,4351,7938,8240,1331,,,5490.0,,,,5022.0,1272,2294,,,,,
4684,2700,10181,3887,183,1331,,,5490.0,,,,6827.0,514,1799,,,,,
73909,2700,4351,12748,18235,1331,,,5490.0,,,,149.0,2498,9470,,,,,
97855,7659,4351,1264,10453,1331,,16669.0,,,,,7937.0,6346,2294,1849.0,5535.0,,,
109491,7659,9675,3795,16087,1331,,16669.0,,,,,12477.0,1041,3214,1849.0,5535.0,,,
146722,2700,566,3887,183,1331,,,5490.0,,,,6827.0,496,7067,,,,,
91197,2700,4351,12229,19094,1331,,,5490.0,,,,11759.0,1272,2294,,,,,
38628,2700,4351,4046,3456,1331,,,5490.0,,,,2833.0,5236,7272,,,,,
79700,2700,4351,10207,21944,1331,,,5490.0,,,,9818.0,187,7272,,,,,
143477,2700,1042,4122,20791,1331,,,5490.0,,,,1735.0,10444,3856,,,,,
92361,2700,4351,12590,4092,1331,,,5490.0,,,,11086.0,10663,9470,,,,,
14997,2700,4351,11697,12815,1331,,,5490.0,,,,7172.0,1272,2294,,,,,
63342,2700,4351,1496,21359,1331,,,5490.0,,,,472.0,2498,9470,,,,,
120528,2700,4351,3281,19634,1331,,,5490.0,,,,9852.0,2498,9470,,,,,
79324,8152,6810,900,10177,1331,,,5490.0,,,,6652.0,5996,11201,,,,,
136801,2307,2734,12004,5958,1331,,,5490.0,,,,282.0,11653,5056,,,,,
73243,116,4351,11283,14033,1331,,,5490.0,,,,1557.0,8883,1419,,,,,
138438,2307,2734,1923,18654,1331,,,5490.0,,,,7800.0,10721,10970,,,,,
66709,2307,2734,5753,4626,1331,,,5490.0,,,,11576.0,11653,5056,,,,,
62643,8152,4351,4122,20791,1331,,,5490.0,,,,8213.0,3354,3113,,,,,
146223,8152,4351,6549,14351,1331,,,5490.0,,,,8146.0,3354,3113,,,,,
79298,2307,2734,1923,18654,1331,,,5490.0,,,,7800.0,1045,5056,,,,,
79119,8152,10002,1986,23382,1331,,,5490.0,,,,12798.0,9301,4502,,,,,
60837,8152,10181,924,21423,1331,,,5490.0,,,,1106.0,5222,4027,,,,,
91118,116,4351,9499,19378,1331,,,5490.0,,,,,7583,7509,,,,,
82859,8152,3080,5506,13264,1331,,,5490.0,,,,11994.0,769,9646,,,,,
17002,2307,2734,2555,12270,1331,,,5490.0,,,,8508.0,1045,5056,,,,,
139557,8152,3228,5006,4393,1331,,,5490.0,,,,667.0,6818,10843,,,,,
82902,8152,255,10201,21330,1331,,,5490.0,,,,,10678,7672,,,,,
72158,8152,10181,1923,18654,1331,,,5490.0,,,,4652.0,5222,4027,,,,,
39205,8152,10181,6549,14351,1331,,,5490.0,,,,8146.0,5222,4027,,,,,
108802,8152,4351,7408,12272,1331,,,5490.0,,,,10591.0,3354,3113,,,,,
44813,8152,7973,9063,10243,1331,,,5490.0,,,,9785.0,11760,10316,,,,,
146404,8152,10181,7502,17073,1331,,,5490.0,,,,2532.0,10609,4027,,,,,
138344,8152,10181,8523,6872,1331,,,5490.0,,,,7972.0,5222,4027,,,,,
93483,8152,2123,715,1969,1331,,,5490.0,,,,5980.0,4701,11099,,,,,
60977,2307,2734,12004,5958,1331,,,5490.0,,,,282.0,8450,11159,,,,,
128515,8152,10181,8987,8977,1331,,,5490.0,,,,13574.0,5222,4027,,,,,
9145,8152,5091,1276,22405,1331,,,5490.0,,,,10326.0,1476,1616,,,,,
46575,8152,1296,10201,21330,1331,,,5490.0,,,,,8029,266,,,,,
146423,8152,4351,5506,13264,1331,,,5490.0,,,,11994.0,3354,3113,,,,,
64620,8152,10181,7408,12272,1331,,,5490.0,,,,10591.0,5222,4027,,,,,
51828,550,10802,5455,5898,1331,,,5490.0,,,,13379.0,2737,1719,,,,,
56304,10728,566,1893,1726,1331,,,5490.0,,,,4674.0,496,7067,,,,,
108541,10728,4351,2393,7359,1331,,,5490.0,,,,2765.0,5566,6758,,,,,
49558,2750,2734,4217,20407,1331,,,5490.0,,,,2827.0,7698,1035,,,,,
85216,10133,4233,12824,4546,1331,,,5490.0,,,,6321.0,3016,6002,,,,,
91572,5111,4493,3763,10600,1331,,,5490.0,,,,4480.0,6075,3507,,,,,
73956,10728,1435,6300,5515,1331,,,5490.0,,,,916.0,7993,7839,,,,,
48984,10275,3637,10121,19454,1331,,,5490.0,,,,8210.0,11463,7184,,,,,
142573,10728,566,219,23469,1331,,,5490.0,,,,11746.0,496,7067,,,,,
64314,10728,955,9090,13934,1331,,,5490.0,,,,1623.0,9552,3593,,,,,
29365,550,1004,11019,22714,1331,,,5490.0,,,,1069.0,10961,10789,,,,,
49651,10728,5987,12068,15316,1331,,,5490.0,,,,11605.0,342,192,,,,,
29895,10728,1004,219,23469,1331,,,5490.0,,,,11746.0,10961,10789,,,,,
129088,10133,7565,3166,23012,1331,,,5490.0,,,,3341.0,776,3975,,,,,
133995,10728,1941,11365,1678,1331,,,5490.0,,,,12444.0,10167,10122,,,,,
72054,10728,7583,566,5478,1331,,,5490.0,,,,3541.0,4980,3722,,,,,
118335,5111,5987,2894,21368,1331,,,5490.0,,,,13287.0,4102,192,,,,,
11262,2750,2734,7502,17073,1331,,,5490.0,,,,10124.0,2539,1131,,,,,
36486,550,10802,4217,20407,1331,,,5490.0,,,,3988.0,2737,1719,,,,,
47382,10728,4351,9090,13934,1331,,,5490.0,,,,6252.0,8212,637,,,,,
84012,905,4351,8139,3884,1331,,,5490.0,,,,10668.0,7216,5174,,,,,
87336,550,6923,4149,20375,1331,,,5490.0,,,,3288.0,12145,5318,,,,,
17728,2750,6810,6337,1859,1331,,,5490.0,,,,2816.0,12107,8083,,,,,
40296,10133,3962,4401,13613,1331,,,5490.0,,,,452.0,9648,8086,,,,,
73394,10728,8841,3781,594,1331,,,5490.0,,,,7968.0,993,4939,,,,,
118410,10728,1004,1893,1726,1331,,,5490.0,,,,4674.0,6220,7308,,,,,
16806,905,4448,9667,19409,1331,,,5490.0,,,,11331.0,8695,7688,,,,,
66479,10133,3962,6053,20022,1331,,,5490.0,,,,,12005,4247,,,,,
90328,10728,4448,2393,7359,1331,,,5490.0,,,,2765.0,8695,7688,,,,,
46784,10133,3080,7412,12094,1331,,,5490.0,,,,183.0,4263,2367,,,,,
82216,10728,562,219,23469,1331,,,5490.0,,,,11746.0,1203,6643,,,,,
412,10728,566,12068,15316,1331,,,5490.0,,,,11605.0,496,7067,,,,,
5045,10728,3087,3398,8402,1331,,,5490.0,,,,3757.0,9062,3458,,,,,
22956,550,2734,9500,16635,1331,,,5490.0,,,,2304.0,5574,169,,,,,
142801,2750,6810,12753,13301,1331,,,5490.0,,,,1862.0,10079,4473,,,,,
151340,10728,7665,6300,5515,1331,,,5490.0,,,,916.0,11748,4356,,,,,
67296,10728,7583,696,9377,1331,,,5490.0,,,,6107.0,6030,5989,,,,,
41923,10728,8600,6300,5515,1331,,,5490.0,,,,916.0,8747,7989,,,,,
117410,10728,8127,11242,9728,1331,,,5490.0,,,,11470.0,9838,570,,,,,
139897,10728,4448,924,21423,1331,,,5490.0,,,,10542.0,12228,8718,,,,,
6300,2750,2734,8041,6798,1331,,,5490.0,,,,711.0,7698,1035,,,,,
71404,10728,4351,3781,594,1331,,,5490.0,,,,7968.0,4928,8818,,,,,
77825,905,1004,5863,1194,1331,,,5490.0,,,,6118.0,6220,7308,,,,,
94778,10728,4448,10522,4738,1331,,,5490.0,,,,9127.0,8695,7688,,,,,
91779,10728,566,9293,1136,1331,,,5490.0,,,,13617.0,496,7067,,,,,
40277,550,6648,11019,22714,1331,,,5490.0,,,,1069.0,5281,1610,,,,,
22792,10728,1941,1876,19568,1331,,,5490.0,,,,3734.0,10167,10122,,,,,
136217,10728,7565,2393,7359,1331,,,5490.0,,,,2765.0,293,5494,,,,,
125663,10728,7230,11242,9728,1331,,,5490.0,,,,11470.0,11277,10988,,,,,
66229,10133,1004,3166,23012,1331,,,5490.0,,,,3341.0,10961,10789,,,,,
9095,905,6805,7302,15180,1331,,,5490.0,,,,8712.0,9060,7178,,,,,
73836,10728,11044,3731,16960,1331,,,5490.0,,,,9412.0,3423,10109,,,,,
116018,10728,7230,10095,3395,1331,,,5490.0,,,,3630.0,11277,10988,,,,,
121817,10728,4448,1893,1726,1331,,,5490.0,,,,4674.0,8695,7688,,,,,
63363,550,2734,10891,5037,1331,,,5490.0,,,,13689.0,84,6098,,,,,
136254,10728,5205,3731,16960,1331,,,5490.0,,,,9412.0,6478,844,,,,,
148707,10728,1435,11806,11363,1331,,,5490.0,,,,3869.0,7993,7839,,,,,
127694,10728,5987,1893,1726,1331,,,5490.0,,,,4674.0,11454,8747,,,,,
78192,10728,566,12498,1026,1331,,,5490.0,,,,6554.0,496,7067,,,,,
52646,550,7709,4631,16086,1331,,,5490.0,,,,2249.0,3948,2570,,,,,
129120,550,1004,4149,20375,1331,,,5490.0,,,,3288.0,10961,10789,,,,,
118757,10728,2123,4717,2168,1331,,,5490.0,,,,1820.0,8751,11099,,,,,
33593,10728,1004,424,1544,1331,,,5490.0,,,,8084.0,6220,7308,,,,,
135746,10728,4351,2393,7359,1331,,,5490.0,,,,2765.0,12161,4725,,,,,
8324,10728,4351,4419,19766,1331,,,5490.0,,,,10053.0,8212,637,,,,,
44090,550,4448,3893,7064,1331,,,5490.0,,,,4949.0,12228,8718,,,,,
1094,10728,1004,2393,7359,1331,,,5490.0,,,,2765.0,6220,7308,,,,,
79187,10699,3080,9293,1136,1331,,,5490.0,,,,7844.0,8879,11361,,,,,
99692,10133,225,7412,12094,1331,,,5490.0,,,,183.0,9529,6714,,,,,
7697,10133,2870,3166,23012,1331,,,5490.0,,,,3341.0,4289,4768,,,,,
5405,10728,4351,11242,9728,1331,,,5490.0,,,,11470.0,1759,10739,,,,,
152451,10728,2142,9293,1136,1331,,,5490.0,,,,13617.0,9372,9736,,,,,
135625,10728,7565,424,1544,1331,,,5490.0,,,,8084.0,293,5494,,,,,
19823,550,5193,2070,12178,1331,,,5490.0,,,,12437.0,10497,7014,,,,,
62394,5111,1296,7887,21946,1331,,,5490.0,,,,4969.0,8029,266,,,,,
81412,10728,6597,6300,5515,1331,,,5490.0,,,,916.0,3346,10111,,,,,
101501,550,1004,3893,7064,1331,,,5490.0,,,,4949.0,6220,7308,,,,,
128554,905,4448,5863,1194,1331,,,5490.0,,,,6118.0,8695,7688,,,,,
27047,550,2734,9990,10656,1331,,,5490.0,,,,12360.0,10721,10970,,,,,
112501,550,10802,8847,13219,1331,,,5490.0,,,,1657.0,8133,1719,,,,,
100620,550,5987,9990,10656,1331,,,5490.0,,,,12360.0,8239,8155,,,,,
137771,905,4351,11886,22117,1331,,,5490.0,,,,1362.0,5029,1419,,,,,
99485,905,7565,5863,1194,1331,,,5490.0,,,,6118.0,293,5494,,,,,
86584,10728,7565,3072,22322,1331,,,5490.0,,,,11466.0,293,5494,,,,,
95473,10728,566,11365,1678,1331,,,5490.0,,,,12444.0,496,7067,,,,,
19487,550,1941,7932,18329,1331,,,5490.0,,,,11598.0,10167,10122,,,,,
35822,550,4351,12054,18743,1331,,,5490.0,,,,3604.0,463,7738,,,,,
8875,10728,1004,10522,4738,1331,,,5490.0,,,,9127.0,6220,7308,,,,,
45253,10728,8841,10095,3395,1331,,,5490.0,,,,3630.0,993,4939,,,,,
105563,550,6847,4769,1790,1331,,,5490.0,,,,2074.0,5605,8226,,,,,
44031,550,7565,4149,20375,1331,,,5490.0,,,,3288.0,293,5494,,,,,
137146,10728,9284,3072,22322,1331,,,5490.0,,,,11466.0,2691,5807,,,,,
64163,5111,3160,7887,21946,1331,,,5490.0,,,,4969.0,468,9518,,,,,
22025,905,4351,5863,1194,1331,,,5490.0,,,,6118.0,8607,3368,,,,,
10329,550,7565,11019,22714,1331,,,5490.0,,,,1069.0,6921,6205,,,,,
63434,2750,6810,4667,15577,1331,,,5490.0,,,,10048.0,12107,8083,,,,,
114290,10728,4351,2393,7359,1331,,,5490.0,,,,2765.0,8607,3368,,,,,
129485,10728,4351,2393,7359,1331,,,5490.0,,,,2765.0,2443,7969,,,,,
22412,10728,4351,6300,5515,1331,,,5490.0,,,,916.0,4928,8818,,,,,
53813,10728,3575,12068,15316,1331,,,5490.0,,,,11605.0,5361,4813,,,,,
133268,10699,2734,11063,13550,1331,,,5490.0,,,,537.0,6391,7789,,,,,
70729,10728,4448,424,1544,1331,,,5490.0,,,,8084.0,8695,7688,,,,,
37223,10728,566,6300,5515,1331,,,5490.0,,,,916.0,496,7067,,,,,
16349,10728,7565,10522,4738,1331,,,5490.0,,,,9127.0,293,5494,,,,,
8537,10699,4493,2622,15821,1331,,,5490.0,,,,10456.0,6634,2711,,,,,
109704,10728,4351,8923,17405,1331,,,5490.0,,,,13047.0,5695,3655,,,,,
55354,10728,1941,11242,9728,1331,,,5490.0,,,,11470.0,10167,10122,,,,,
67069,10728,7565,1893,1726,1331,,,5490.0,,,,4674.0,293,5494,,,,,
100888,2750,4277,4217,20407,1331,,,5490.0,,,,2827.0,1092,10993,,,,,
100249,10728,5987,6300,5515,1331,,,5490.0,,,,916.0,11454,8747,,,,,
2822,10728,1004,3072,22322,1331,,,5490.0,,,,11466.0,6220,7308,,,,,
56020,905,7565,9667,19409,1331,,,5490.0,,,,11331.0,293,5494,,,,,
16263,10728,7565,219,23469,1331,,,5490.0,,,,11746.0,293,5494,,,,,
12783,10699,4351,11563,8635,1331,,,5490.0,,,,1997.0,7144,8490,,,,,
99876,550,7565,3893,7064,1331,,,5490.0,,,,4949.0,293,5494,,,,,
48203,905,1004,9667,19409,1331,,,5490.0,,,,11331.0,6220,7308,,,,,
49641,10133,3962,10655,9580,1331,,,5490.0,,,,6815.0,12005,4247,,,,,
129655,10728,6910,6300,5515,1331,,,5490.0,,,,916.0,11748,4356,,,,,
128043,2750,4277,8041,6798,1331,,,5490.0,,,,711.0,1092,10993,,,,,
64265,10728,2142,6300,5515,1331,,,5490.0,,,,916.0,9372,9736,,,,,
1 observation_id person_id observation_concept_id observation_date observation_datetime observation_type_concept_id value_as_number value_as_string value_as_concept_id qualifier_concept_id unit_concept_id provider_id visit_occurrence_id observation_source_value observation_source_concept_id unit_source_value qualifier_source_value value_source_concept_id value_source_value questionnaire_response_id
2 118208 5557 9425 3823 10549 1331 16669.0 8936.0 11839 6242 1849.0 5535.0
3 112221 5557 1268 8176 4688 1331 16669.0 9908.0 7436 6037 1849.0 5535.0
4 92924 5557 1268 3823 13501 1331 16669.0 8043.0 7436 6037 1849.0 5535.0
5 87525 5557 562 6238 5732 1331 16669.0 2539.0 3555 914 1849.0 5535.0
6 88732 5557 1268 3823 10549 1331 16669.0 8936.0 7436 6037 1849.0 5535.0
7 127541 5230 255 4070 17510 1331 5490.0 8823.0 10678 7672
8 143650 665 5987 6705 10269 1331 5490.0 6992.0 11454 8747
9 69801 665 8220 11554 17750 1331 5490.0 6910.0 4645 7332
10 102810 665 3637 1222 15887 1331 5490.0 5139.0 5309 5692
11 143746 665 8499 3363 666 1331 5490.0 7948.0 5963 2112
12 70261 665 7654 11258 18677 1331 5490.0 12665.0 6282 333
13 40451 665 3637 1330 6520 1331 5490.0 5793.0 6548 7716
14 20543 665 6866 9228 15133 1331 5490.0 9252.0 11880 1768
15 100742 665 5987 11806 11363 1331 5490.0 4102 192
16 128493 665 3637 9520 13609 1331 5490.0 8390.0 5309 5692
17 118347 665 4084 11258 18677 1331 5490.0 12665.0 1637 10082
18 70737 665 9675 6995 21994 1331 5490.0 8156.0 11592 3413
19 16780 9034 2273 8988 12680 1331 5490.0 11630.0 7739 5531
20 48409 9034 2273 8530 10717 1331 5490.0 2681.0 7739 5531
21 95301 665 2123 3877 22319 1331 5490.0 12932.0 4701 11099
22 109187 665 8499 586 20186 1331 5490.0 13320.0 5963 2112
23 131936 665 3637 3019 1916 1331 5490.0 326.0 5309 5692
24 11545 665 9675 11258 18677 1331 5490.0 12665.0 229 9044
25 45240 665 9675 5659 7261 1331 5490.0 3579.0 3906 3214
26 94641 9034 2123 8988 12680 1331 5490.0 11630.0 9951 1400
27 61317 665 8499 12397 21443 1331 5490.0 7050.0 5963 2112
28 96121 665 5987 11258 18677 1331 5490.0 12665.0 271 2597
29 141495 9034 2273 4972 4053 1331 5490.0 10150.0 7739 5531
30 46013 665 7230 4975 8765 1331 5490.0 8632.0 7140 9976
31 27580 665 6866 10230 22399 1331 5490.0 11228.0 11880 1768
32 31663 665 1004 6701 19159 1331 5490.0 12712.0 6220 7308
33 53487 665 9425 9168 23137 1331 5490.0 3789.0 954 6242
34 96920 665 8499 7684 24162 1331 5490.0 2125.0 6421 2112
35 140655 665 566 11289 23244 1331 5490.0 8937.0 496 7067
36 22671 665 3637 7814 14867 1331 5490.0 3367.0 5309 5692
37 73299 665 5987 11801 10623 1331 5490.0 9541.0 8239 8155
38 33464 9034 5772 8988 12680 1331 5490.0 11630.0 5293 3180
39 116430 665 8499 9520 13609 1331 5490.0 8390.0 6421 2112
40 42612 665 566 11258 18677 1331 5490.0 12665.0 496 7067
41 151800 665 2123 6995 21994 1331 5490.0 8156.0 8751 11099
42 66963 665 5987 757 20626 1331 5490.0 2315.0 11454 8747
43 20955 665 9675 757 20626 1331 5490.0 2315.0 229 9044
44 29389 665 6866 9591 9107 1331 5490.0 8111.0 11880 1768
45 47723 665 8881 3877 22319 1331 5490.0 12932.0 9490 836
46 145483 665 8220 11289 23244 1331 5490.0 8937.0 4645 7332
47 148716 665 5987 1387 17146 1331 5490.0 1679.0 4102 192
48 60966 665 6866 6217 3474 1331 5490.0 7540.0 11880 1768
49 74964 665 8220 6705 10269 1331 5490.0 6992.0 4645 7332
50 111786 665 566 757 20626 1331 5490.0 2315.0 496 7067
51 41338 665 9675 10799 349 1331 5490.0 3164.0 5538 9044
52 27522 665 9675 6705 10269 1331 5490.0 6992.0 229 9044
53 64564 665 3637 8188 3756 1331 5490.0 3488.0 4974 7184
54 69978 665 7565 6701 19159 1331 5490.0 12712.0 293 5494
55 34968 665 3637 7684 24162 1331 5490.0 2125.0 5309 5692
56 23218 665 3637 245 13206 1331 5490.0 5309 5692
57 71119 665 8881 2149 3205 1331 5490.0 6073.0 9490 836
58 66535 665 566 6705 10269 1331 5490.0 6992.0 496 7067
59 65054 665 11121 11258 18677 1331 5490.0 12665.0 4843 5773
60 74272 665 566 11554 17750 1331 5490.0 6910.0 496 7067
61 110821 665 9675 2960 7987 1331 5490.0 3465.0 3906 3214
62 146780 665 3637 12397 21443 1331 5490.0 7050.0 6289 5692
63 53661 665 5987 11289 23244 1331 5490.0 8937.0 6804 10990
64 115297 9034 3637 10182 380 1331 5490.0 9044.0 11463 7184
65 88141 665 8220 11258 18677 1331 5490.0 12665.0 4645 7332
66 108101 665 5987 6705 10269 1331 5490.0 6992.0 271 2597
67 152503 665 5987 11554 17750 1331 5490.0 6910.0 271 2597
68 88754 665 5987 2960 7987 1331 5490.0 3465.0 271 2597
69 17476 9034 2273 12445 8047 1331 5490.0 13143.0 7739 5531
70 1955 665 3637 3363 666 1331 5490.0 7948.0 6289 5692
71 118939 665 3637 10248 5700 1331 5490.0 5350.0 6289 5692
72 115691 665 5987 7754 13286 1331 5490.0 13355.0 4102 192
73 111900 665 5987 11554 17750 1331 5490.0 6910.0 6804 10990
74 99133 665 4351 11554 17750 1331 5490.0 6910.0 3158 3294
75 33439 665 4351 10248 5700 1331 5490.0 5350.0 10401 2940
76 76750 665 4351 11258 18677 1331 5490.0 12665.0 3955 4266
77 101677 665 4351 11554 17750 1331 5490.0 6910.0 3955 4266
78 7658 665 4351 757 20626 1331 5490.0 2315.0 7938 758
79 8349 665 4351 11289 23244 1331 5490.0 8937.0 3955 4266
80 83441 665 4351 2960 7987 1331 5490.0 3465.0 3955 4266
81 31987 665 4351 757 20626 1331 5490.0 2315.0 3955 4266
82 149415 7552 10002 9293 1136 1331 5490.0 13107.0 9301 4502
83 109005 889 3080 2677 11631 1331 5490.0 12081 1503
84 51503 889 255 1957 19548 1331 5490.0 10678 7672
85 92084 584 8881 933 23961 1331 5490.0 5399.0 1933 836
86 20482 584 8220 286 19980 1331 5490.0 9158.0 2464 7332
87 142288 584 3637 6366 21753 1331 5490.0 6548 7716
88 26495 584 8220 7954 2585 1331 5490.0 9965.0 2464 7332
89 44120 889 5772 12734 19047 1331 5490.0 4378 10734
90 25470 584 8220 6297 10755 1331 5490.0 9721.0 2464 7332
91 55155 584 8220 12707 5062 1331 5490.0 10641.0 2464 7332
92 59236 584 3228 8590 11654 1331 5490.0 11500.0 6818 10843
93 51768 584 7973 913 21672 1331 5490.0 3441.0 7416 7132
94 46767 889 5987 1789 4216 1331 5490.0 4102 192
95 98773 584 8220 8901 6846 1331 5490.0 1663.0 2464 7332
96 102018 889 1815 995 12664 1331 5490.0 4139.0 7236 6845
97 16147 889 9425 3510 1739 1331 5490.0 3252.0 2685 6242
98 37396 889 4351 4335 5449 1331 5490.0 11376.0 2443 7969
99 110428 889 3637 8343 20660 1331 5490.0 3918.0 5309 5692
100 11390 889 8609 2960 7987 1331 5490.0 8379 1288
101 18726 584 2123 2873 3314 1331 5490.0 7270.0 9951 1400
102 8677 889 5987 2836 20839 1331 5490.0 11801.0 4102 192
103 31211 889 5904 1957 19548 1331 5490.0 2790 3686
104 123923 584 8220 693 17394 1331 5490.0 2464 7332
105 88350 584 8220 1675 17892 1331 5490.0 1614.0 2464 7332
106 130425 584 8220 11192 21322 1331 5490.0 11314.0 4645 7332
107 17957 584 8220 913 21672 1331 5490.0 3441.0 2464 7332
108 148169 889 4351 4162 20465 1331 5490.0 8503.0 4435 7969
109 46432 889 9425 6584 13541 1331 5490.0 6965.0 2685 6242
110 117012 889 4351 765 5507 1331 5490.0 12148.0 1376 374
111 127289 889 1815 9018 16763 1331 5490.0 9990.0 3899 6845
112 129839 889 8499 7312 24175 1331 5490.0 9424.0 6421 2112
113 137161 889 3637 6416 9237 1331 5490.0 1274.0 5309 5692
114 86281 889 5987 564 14434 1331 5490.0 4102 192
115 121552 889 9425 12206 19851 1331 5490.0 10580.0 2685 6242
116 5523 584 8220 8187 8921 1331 5490.0 5043.0 2464 7332
117 131839 584 8220 3520 5888 1331 5490.0 10633.0 2464 7332
118 75866 584 2123 6883 20216 1331 5490.0 6350.0 8751 11099
119 71809 889 5987 6911 21649 1331 5490.0 1570.0 342 192
120 134463 889 10181 3070 14517 1331 5490.0 2327.0 10757 6956
121 39004 584 8220 9583 4888 1331 5490.0 5606.0 2464 7332
122 89639 889 3637 12206 19851 1331 5490.0 10580.0 5309 5692
123 73506 8266 2704 2555 12270 1331 5490.0 9705.0 9842 670
124 139715 2487 10289 8577 23785 1331 5490.0 2909.0 11400 5264
125 92298 2487 10289 2836 20839 1331 5490.0 12203.0 11400 5264
126 112860 2487 10289 5502 18949 1331 5490.0 5401.0 11400 5264
127 94341 2487 10289 10960 23341 1331 5490.0 12230.0 11400 5264
128 84661 2487 5987 8577 23785 1331 5490.0 2909.0 11655 8155
129 127815 8266 2704 8418 22417 1331 5490.0 5987.0 9842 670
130 114637 2487 9284 11406 21765 1331 5490.0 8760.0 2051 9025
131 120662 8266 2734 2555 12270 1331 5490.0 3356.0 6992 3891
132 77654 2487 10289 10543 11301 1331 5490.0 5797.0 11400 5264
133 52859 2487 1941 865 18965 1331 5490.0 1317.0 10167 10122
134 99667 2487 5987 10402 21256 1331 5490.0 4198.0 11655 8155
135 39458 2487 10289 10402 21256 1331 5490.0 4198.0 11400 5264
136 137598 2487 2123 7653 5315 1331 5490.0 12212.0 8088 8147
137 42479 2487 5987 5502 18949 1331 5490.0 5401.0 11655 8155
138 47641 2487 562 7653 5315 1331 5490.0 12212.0 9598 914
139 138942 2487 6587 10960 23341 1331 5490.0 12230.0 10651 6830
140 3496 2487 10289 12854 1260 1331 5490.0 3740.0 11400 5264
141 66663 2487 3637 3502 7058 1331 5490.0 7985.0 5309 5692
142 144416 2487 10289 6526 13869 1331 5490.0 4204.0 11400 5264
143 150343 229 5248 8255 21747 1331 5490.0 5302.0 507 1962
144 52099 229 5987 4310 21923 1331 5490.0 7701.0 4102 192
145 121789 229 566 8255 21747 1331 5490.0 5302.0 496 7067
146 52153 229 1004 4824 16715 1331 5490.0 8138.0 10961 10789
147 95103 229 5987 8913 18400 1331 5490.0 9117.0 4102 192
148 102328 229 6847 7047 20430 1331 5490.0 3158.0 5605 8226
149 126774 229 7565 4824 16715 1331 5490.0 8138.0 776 3975
150 127133 229 4351 8255 21747 1331 5490.0 5302.0 9451 8766
151 69764 229 7565 7636 3074 1331 5490.0 10449.0 293 5494
152 93154 5895 5987 8255 21747 1331 5490.0 4102 192
153 45928 229 5987 8255 21747 1331 5490.0 5302.0 11454 8747
154 9543 229 5987 2633 5260 1331 5490.0 7738.0 4102 192
155 41640 229 6810 8396 4809 1331 5490.0 7303.0 471 4817
156 10654 229 5987 4014 8773 1331 5490.0 8388.0 4102 192
157 16687 229 6810 5258 10596 1331 5490.0 4544.0 471 4817
158 25069 229 6810 5534 7595 1331 5490.0 7577.0 471 4817
159 137225 229 8598 8255 21747 1331 5490.0 5302.0 1179 10074
160 88948 229 4351 8255 21747 1331 5490.0 5302.0 7108 6713
161 39653 229 1004 8255 21747 1331 5490.0 5302.0 854 4938
162 137353 229 5248 4824 16715 1331 5490.0 8138.0 3288 5861
163 32231 229 9305 8255 21747 1331 5490.0 5302.0 12050 8552
164 48748 229 6810 4619 11842 1331 5490.0 471 4817
165 24139 229 1004 4824 16715 1331 5490.0 8138.0 854 4938
166 119203 229 6810 4824 16715 1331 5490.0 8138.0 7162 4817
167 37449 229 5044 4824 16715 1331 5490.0 8138.0 8452 1985
168 98305 229 5987 8255 21747 1331 5490.0 5302.0 271 2597
169 106283 229 5987 564 14434 1331 5490.0 316.0 4102 192
170 83001 229 1004 8255 21747 1331 5490.0 5302.0 10961 10789
171 42771 229 5987 9913 1154 1331 5490.0 4659.0 4102 192
172 139650 229 9305 7636 3074 1331 5490.0 10449.0 6002 5633
173 105281 229 6810 12756 8578 1331 5490.0 6332.0 471 4817
174 140570 229 3087 11118 13079 1331 5490.0 9512.0 9062 3458
175 151531 5895 5987 11997 21650 1331 5490.0 11501.0 4102 192
176 58777 229 1004 7636 3074 1331 5490.0 10449.0 6220 7308
177 84286 229 1941 7636 3074 1331 5490.0 10449.0 10167 10122
178 51431 7508 183 12097 4178 1331 16669.0 2792.0 7396 3649 1849.0 5535.0
179 6859 7508 3575 5313 16218 1331 16669.0 2048.0 8641 4813 1849.0 5535.0
180 122615 7508 9051 5313 16218 1331 16669.0 2048.0 5459 8021 1849.0 5535.0
181 29681 7508 8812 8043 16726 1331 16669.0 6360.0 11218 1352 1849.0 5535.0
182 81739 7508 8006 8043 16726 1331 16669.0 6360.0 11570 2035 1849.0 5535.0
183 75396 7508 1264 12103 21026 1331 16669.0 2319.0 294 6737 1849.0 5535.0
184 1615 7508 5987 5313 16218 1331 16669.0 2048.0 971 192 1849.0 5535.0
185 81559 7508 4351 7788 1933 1331 16669.0 9700.0 6346 2294 1849.0 5535.0
186 142462 7508 4351 12103 21026 1331 16669.0 2319.0 6346 2294 1849.0 5535.0
187 54948 7508 4351 1317 8742 1331 16669.0 4893.0 9550 4725 1849.0 5535.0
188 91359 7508 4351 5313 16218 1331 16669.0 2048.0 6346 2294 1849.0 5535.0
189 102634 2253 5987 11649 9206 1331 5490.0 12897.0 342 192
190 57404 2253 5987 12081 20227 1331 5490.0 3837.0 4102 192
191 59301 2253 7127 6349 18224 1331 5490.0 342.0 5537 6041
192 46314 2253 8644 7278 22139 1331 5490.0 5122.0 2352 1040
193 99875 2253 8881 9178 10472 1331 5490.0 2495.0 9490 836
194 101072 2253 6743 10798 14751 1331 5490.0 9281.0 5140 4357
195 54214 2253 8644 12081 20227 1331 5490.0 4620.0 2352 1040
196 29372 2253 5987 7278 22139 1331 5490.0 7573.0 4102 192
197 16606 2253 5987 757 20626 1331 5490.0 11146.0 4102 192
198 36083 2253 5987 5502 18949 1331 5490.0 9128.0 342 192
199 90263 2253 1042 457 8629 1331 5490.0 10905.0 10444 3856
200 141677 2253 5622 6349 18224 1331 5490.0 342.0 559 1123
201 112438 2253 7973 1690 15078 1331 5490.0 9394.0 11760 10316
202 40469 2253 1941 10102 2413 1331 5490.0 8328.0 10167 10122
203 61710 2253 5987 9456 2238 1331 5490.0 7941.0 4102 192
204 146689 2253 4555 9643 3647 1331 5490.0 11276.0 5174 241
205 123770 2253 8644 6203 22276 1331 5490.0 4005.0 2352 1040
206 145101 2253 1941 5436 3310 1331 5490.0 2108.0 898 10122
207 16732 2253 1941 10245 6616 1331 5490.0 11097.0 10167 10122
208 141264 2253 5987 6203 22276 1331 5490.0 4005.0 11454 8747
209 33788 2253 2734 457 8629 1331 5490.0 10905.0 6992 3891
210 98588 2253 2734 8880 6505 1331 5490.0 12136.0 84 6098
211 55856 2253 4351 6349 18224 1331 5490.0 342.0 1557 1323
212 90501 2253 4351 1690 15078 1331 5490.0 9394.0 1557 1323
213 17854 2253 4351 6349 18224 1331 5490.0 342.0 463 7738
214 93949 2253 4351 1690 15078 1331 5490.0 9394.0 463 7738
215 83743 2253 4351 12597 22984 1331 5490.0 8497.0 463 7738
216 122179 2253 4351 1464 7793 1331 5490.0 4455.0 463 7738
217 72134 2253 4351 9643 3647 1331 5490.0 11276.0 463 7738
218 82182 2253 4351 4589 9396 1331 5490.0 11234.0 463 7738
219 98134 2253 4351 6355 22424 1331 5490.0 5801.0 463 7738
220 105276 2253 4351 457 8629 1331 5490.0 10905.0 1272 2294
221 80892 2253 4351 1983 18523 1331 5490.0 13679.0 463 7738
222 138861 2253 4351 3131 13151 1331 5490.0 9955.0 463 7738
223 125680 2253 4351 1464 7793 1331 5490.0 4455.0 10344 10492
224 62465 2253 4351 9808 2635 1331 5490.0 5887.0 463 7738
225 43261 2253 4351 7015 21437 1331 5490.0 8370.0 7216 5174
226 65994 2253 4351 8428 6179 1331 5490.0 1370.0 463 7738
227 44338 2253 4351 8579 8565 1331 5490.0 5190.0 1557 1323
228 97523 2253 4351 6203 22276 1331 5490.0 4005.0 10401 2940
229 88274 2253 4351 1716 23720 1331 5490.0 1242.0 7216 5174
230 84947 2253 4351 10804 16846 1331 5490.0 7350.0 463 7738
231 78897 2253 4351 2276 12297 1331 5490.0 4111.0 463 7738
232 19460 2253 4351 8801 10295 1331 5490.0 10979.0 463 7738
233 45054 2253 4351 12840 4293 1331 5490.0 2696.0 7457 1323
234 3724 2253 4351 8579 8565 1331 5490.0 5190.0 6544 2324
235 88025 2253 4351 9643 3647 1331 5490.0 11276.0 4132 10267
236 20599 6920 5987 12639 11106 1331 5490.0 3916.0 342 192
237 149124 4834 3962 5830 3432 1331 5490.0 7824.0 1636 4542
238 63370 4834 3962 11863 11571 1331 5490.0 9856.0 9269 2063
239 60927 4834 4880 8645 5004 1331 5490.0 7989.0 8711 5316
240 52404 4834 3962 1463 13009 1331 5490.0 12139.0 4275 2063
241 18949 6920 10181 1276 22405 1331 5490.0 2705.0 2732 566
242 67625 4834 3962 963 4234 1331 5490.0 13601.0 9269 2063
243 51784 4834 3962 1282 18682 1331 5490.0 8989.0 4275 2063
244 128512 4834 1004 8645 5004 1331 5490.0 7989.0 10961 10789
245 131302 6920 3087 5659 7261 1331 5490.0 5010.0 6673 9982
246 24005 4834 1004 8645 5004 1331 5490.0 7989.0 854 4938
247 52479 4834 7565 8645 5004 1331 5490.0 7989.0 293 5494
248 5760 4834 3080 7073 23818 1331 5490.0 1898.0 8631 7975
249 147602 4834 10181 1073 18068 1331 5490.0 2651.0 7220 8765
250 10640 4834 10181 9811 22231 1331 5490.0 589.0 9884 8765
251 93595 4834 3080 1073 18068 1331 5490.0 2651.0 5484 1813
252 16943 6920 2734 12639 11106 1331 5490.0 3916.0 1045 5056
253 127327 4834 3962 7853 12266 1331 5490.0 11693.0 4275 2063
254 54714 4834 3962 5830 3432 1331 5490.0 7824.0 8342 6187
255 60188 4834 225 798 18716 1331 5490.0 10891.0 9529 6714
256 113924 4834 3962 11750 20208 1331 5490.0 13110.0 1636 4542
257 24149 6920 7565 924 21423 1331 5490.0 3325.0 293 5494
258 120692 4834 3962 6041 2660 1331 5490.0 4909.0 4275 2063
259 123053 6920 5987 924 21423 1331 5490.0 3325.0 342 192
260 78517 4834 3962 9735 13036 1331 5490.0 2852.0 4275 2063
261 136540 4834 225 12816 2955 1331 5490.0 13282.0 9529 6714
262 56770 4834 5248 8645 5004 1331 5490.0 7989.0 7110 9680
263 115892 4834 2495 8645 5004 1331 5490.0 7989.0 10328 5186
264 149330 9633 7230 8490 11530 1331 16669.0 13068.0 11185 10988 1849.0 5535.0
265 120230 9633 7230 1947 19476 1331 16669.0 6918.0 11185 10988 1849.0 5535.0
266 118473 9633 4351 3273 21867 1331 16669.0 6912.0 5611 3167 1849.0 5535.0
267 41457 9633 7230 4110 20602 1331 16669.0 9771.0 11185 10988 1849.0 5535.0
268 55276 9633 7230 1947 12291 1331 16669.0 4856.0 11185 10988 1849.0 5535.0
269 42791 7659 4351 11141 10173 1331 16669.0 10857.0 6346 2294 1849.0 5535.0
270 54119 7659 4351 5193 15553 1331 16669.0 13571.0 8007 118 1849.0 5535.0
271 51285 7659 9675 4517 14075 1331 16669.0 6033.0 1041 3214 1849.0 5535.0
272 55583 7659 4351 4517 14075 1331 16669.0 6033.0 6346 2294 1849.0 5535.0
273 152488 10034 10574 12103 14043 1331 5490.0 10617.0 7922 1613
274 98325 7659 3600 5193 15553 1331 16669.0 13571.0 7600 1586 1849.0 5535.0
275 136758 2700 255 2965 23642 1331 5490.0 966.0 827 10862
276 60119 7659 4351 3795 16087 1331 16669.0 12477.0 6346 2294 1849.0 5535.0
277 11703 2700 8644 3887 183 1331 5490.0 6827.0 12129 45
278 95659 2700 10181 2045 18201 1331 5490.0 6978.0 2434 9641
279 86997 7659 5987 1264 10453 1331 16669.0 7937.0 692 2597 1849.0 5535.0
280 134716 2700 4351 7671 19255 1331 5490.0 10761.0 2498 9470
281 34136 2700 4351 6769 23457 1331 5490.0 216.0 2498 9470
282 70662 2700 4351 7938 8240 1331 5490.0 5022.0 3870 3127
283 123762 7659 255 3795 16087 1331 16669.0 12477.0 10889 7672 1849.0 5535.0
284 58274 2700 2734 9260 19762 1331 5490.0 1426.0 4526 9165
285 148981 2700 3575 3887 183 1331 5490.0 6827.0 5361 4813
286 16736 2700 1042 3887 183 1331 5490.0 6827.0 10444 3856
287 95110 2700 4351 4122 20791 1331 5490.0 1735.0 5236 7272
288 43316 2700 4351 3887 183 1331 5490.0 6827.0 7500 2632
289 94283 2700 9433 3887 183 1331 5490.0 6827.0 3548 6892
290 72347 2700 4351 11289 23244 1331 5490.0 7034.0 3870 3127
291 94264 2700 8644 11697 12815 1331 5490.0 7172.0 7817 11228
292 70625 2700 4351 11289 23244 1331 5490.0 7034.0 5236 7272
293 118474 2700 4351 11289 23244 1331 5490.0 7034.0 7500 2632
294 92735 2700 2734 1463 13009 1331 5490.0 8045.0 5513 11371
295 93664 2700 4351 1904 14127 1331 5490.0 5893.0 1272 2294
296 126651 2700 4351 5478 3145 1331 5490.0 11028.0 5236 7272
297 2601 2700 1296 3887 183 1331 5490.0 6827.0 6175 266
298 121941 2700 4351 1904 14127 1331 5490.0 5893.0 5236 7272
299 131680 2700 566 1904 14127 1331 5490.0 5893.0 496 7067
300 64594 2700 4351 11697 12815 1331 5490.0 7172.0 3870 3127
301 140307 2700 4351 2769 16084 1331 5490.0 3265.0 1272 2294
302 119028 2700 2734 2965 23642 1331 5490.0 4475.0 84 6098
303 32014 2700 4351 5487 9554 1331 5490.0 6103.0 2498 9470
304 15371 2700 5987 1904 14127 1331 5490.0 5893.0 271 2597
305 42228 2700 2734 10486 18241 1331 5490.0 885.0 4526 9165
306 49765 2700 5987 12229 19094 1331 5490.0 11759.0 271 2597
307 95955 2700 2734 4392 9298 1331 5490.0 13378.0 5513 11371
308 86113 2700 10347 8406 628 1331 5490.0 9199.0 9013 2475
309 146880 2700 4351 10496 17766 1331 5490.0 264.0 2498 9470
310 31815 2700 4351 2769 16084 1331 5490.0 3265.0 10663 9470
311 146126 2700 4351 10496 17766 1331 5490.0 264.0 187 7272
312 117743 2700 3493 3887 183 1331 5490.0 6827.0 5926 2051
313 50121 2700 10181 11697 12815 1331 5490.0 7172.0 514 1799
314 2371 2700 4351 12229 19094 1331 5490.0 11759.0 5236 7272
315 127277 2700 566 11289 23244 1331 5490.0 7034.0 496 7067
316 33457 2700 4351 12499 4680 1331 5490.0 10434.0 9042 2097
317 102325 2700 4351 7671 19255 1331 5490.0 10761.0 9042 2097
318 72241 2700 4351 11289 23244 1331 5490.0 7034.0 1272 2294
319 105384 2700 5987 10719 8159 1331 5490.0 3212.0 342 192
320 15937 2700 4351 10207 21944 1331 5490.0 9818.0 9042 2097
321 132531 2700 9675 2769 16084 1331 5490.0 3265.0 420 2969
322 62830 2700 4351 2769 16084 1331 5490.0 3265.0 11562 2097
323 20912 2700 7699 4122 20791 1331 5490.0 1735.0 6864 3621
324 88682 2700 4351 12499 4680 1331 5490.0 10434.0 2498 9470
325 77519 2700 4351 10207 21944 1331 5490.0 9818.0 2498 9470
326 17620 2700 4351 11697 12815 1331 5490.0 7172.0 7500 2632
327 35366 2700 4351 4122 20791 1331 5490.0 1735.0 1272 2294
328 18793 2700 10574 11697 12815 1331 5490.0 7172.0 5388 1613
329 9423 2700 4351 8447 11940 1331 5490.0 7421.0 9042 2097
330 133036 2700 255 1018 20367 1331 5490.0 8237.0 827 10862
331 44732 2700 2431 2045 18201 1331 5490.0 6978.0 4152 6170
332 107150 2700 4351 7938 8240 1331 5490.0 5022.0 5236 7272
333 117279 2700 5987 10496 17766 1331 5490.0 264.0 4102 192
334 125689 2700 4351 7938 8240 1331 5490.0 5022.0 10663 9470
335 76836 2700 8600 11289 23244 1331 5490.0 7034.0 8747 7989
336 7573 2700 566 12229 19094 1331 5490.0 11759.0 496 7067
337 94634 2700 9675 12229 19094 1331 5490.0 11759.0 420 2969
338 32886 2700 4351 12229 19094 1331 5490.0 11759.0 10663 9470
339 104258 2700 4351 9465 481 1331 5490.0 7767.0 2498 9470
340 30325 2700 5987 7938 8240 1331 5490.0 5022.0 271 2597
341 75482 2700 5987 12206 19851 1331 5490.0 11913.0 342 192
342 75245 2700 4351 4122 20791 1331 5490.0 1735.0 3870 3127
343 4022 2700 4351 12748 18235 1331 5490.0 149.0 9042 2097
344 71386 2700 4351 1994 9287 1331 5490.0 12875.0 5236 7272
345 139341 2700 4351 6769 23457 1331 5490.0 216.0 9042 2097
346 132605 7659 4351 8374 14572 1331 16669.0 12842.0 527 8825 1849.0 5535.0
347 96863 2700 4351 8447 11940 1331 5490.0 7421.0 2498 9470
348 93150 2700 5987 11289 23244 1331 5490.0 7034.0 271 2597
349 29482 2700 10347 12229 19094 1331 5490.0 2544.0 2339 2475
350 116558 2700 4351 7938 8240 1331 5490.0 5022.0 1272 2294
351 4684 2700 10181 3887 183 1331 5490.0 6827.0 514 1799
352 73909 2700 4351 12748 18235 1331 5490.0 149.0 2498 9470
353 97855 7659 4351 1264 10453 1331 16669.0 7937.0 6346 2294 1849.0 5535.0
354 109491 7659 9675 3795 16087 1331 16669.0 12477.0 1041 3214 1849.0 5535.0
355 146722 2700 566 3887 183 1331 5490.0 6827.0 496 7067
356 91197 2700 4351 12229 19094 1331 5490.0 11759.0 1272 2294
357 38628 2700 4351 4046 3456 1331 5490.0 2833.0 5236 7272
358 79700 2700 4351 10207 21944 1331 5490.0 9818.0 187 7272
359 143477 2700 1042 4122 20791 1331 5490.0 1735.0 10444 3856
360 92361 2700 4351 12590 4092 1331 5490.0 11086.0 10663 9470
361 14997 2700 4351 11697 12815 1331 5490.0 7172.0 1272 2294
362 63342 2700 4351 1496 21359 1331 5490.0 472.0 2498 9470
363 120528 2700 4351 3281 19634 1331 5490.0 9852.0 2498 9470
364 79324 8152 6810 900 10177 1331 5490.0 6652.0 5996 11201
365 136801 2307 2734 12004 5958 1331 5490.0 282.0 11653 5056
366 73243 116 4351 11283 14033 1331 5490.0 1557.0 8883 1419
367 138438 2307 2734 1923 18654 1331 5490.0 7800.0 10721 10970
368 66709 2307 2734 5753 4626 1331 5490.0 11576.0 11653 5056
369 62643 8152 4351 4122 20791 1331 5490.0 8213.0 3354 3113
370 146223 8152 4351 6549 14351 1331 5490.0 8146.0 3354 3113
371 79298 2307 2734 1923 18654 1331 5490.0 7800.0 1045 5056
372 79119 8152 10002 1986 23382 1331 5490.0 12798.0 9301 4502
373 60837 8152 10181 924 21423 1331 5490.0 1106.0 5222 4027
374 91118 116 4351 9499 19378 1331 5490.0 7583 7509
375 82859 8152 3080 5506 13264 1331 5490.0 11994.0 769 9646
376 17002 2307 2734 2555 12270 1331 5490.0 8508.0 1045 5056
377 139557 8152 3228 5006 4393 1331 5490.0 667.0 6818 10843
378 82902 8152 255 10201 21330 1331 5490.0 10678 7672
379 72158 8152 10181 1923 18654 1331 5490.0 4652.0 5222 4027
380 39205 8152 10181 6549 14351 1331 5490.0 8146.0 5222 4027
381 108802 8152 4351 7408 12272 1331 5490.0 10591.0 3354 3113
382 44813 8152 7973 9063 10243 1331 5490.0 9785.0 11760 10316
383 146404 8152 10181 7502 17073 1331 5490.0 2532.0 10609 4027
384 138344 8152 10181 8523 6872 1331 5490.0 7972.0 5222 4027
385 93483 8152 2123 715 1969 1331 5490.0 5980.0 4701 11099
386 60977 2307 2734 12004 5958 1331 5490.0 282.0 8450 11159
387 128515 8152 10181 8987 8977 1331 5490.0 13574.0 5222 4027
388 9145 8152 5091 1276 22405 1331 5490.0 10326.0 1476 1616
389 46575 8152 1296 10201 21330 1331 5490.0 8029 266
390 146423 8152 4351 5506 13264 1331 5490.0 11994.0 3354 3113
391 64620 8152 10181 7408 12272 1331 5490.0 10591.0 5222 4027
392 51828 550 10802 5455 5898 1331 5490.0 13379.0 2737 1719
393 56304 10728 566 1893 1726 1331 5490.0 4674.0 496 7067
394 108541 10728 4351 2393 7359 1331 5490.0 2765.0 5566 6758
395 49558 2750 2734 4217 20407 1331 5490.0 2827.0 7698 1035
396 85216 10133 4233 12824 4546 1331 5490.0 6321.0 3016 6002
397 91572 5111 4493 3763 10600 1331 5490.0 4480.0 6075 3507
398 73956 10728 1435 6300 5515 1331 5490.0 916.0 7993 7839
399 48984 10275 3637 10121 19454 1331 5490.0 8210.0 11463 7184
400 142573 10728 566 219 23469 1331 5490.0 11746.0 496 7067
401 64314 10728 955 9090 13934 1331 5490.0 1623.0 9552 3593
402 29365 550 1004 11019 22714 1331 5490.0 1069.0 10961 10789
403 49651 10728 5987 12068 15316 1331 5490.0 11605.0 342 192
404 29895 10728 1004 219 23469 1331 5490.0 11746.0 10961 10789
405 129088 10133 7565 3166 23012 1331 5490.0 3341.0 776 3975
406 133995 10728 1941 11365 1678 1331 5490.0 12444.0 10167 10122
407 72054 10728 7583 566 5478 1331 5490.0 3541.0 4980 3722
408 118335 5111 5987 2894 21368 1331 5490.0 13287.0 4102 192
409 11262 2750 2734 7502 17073 1331 5490.0 10124.0 2539 1131
410 36486 550 10802 4217 20407 1331 5490.0 3988.0 2737 1719
411 47382 10728 4351 9090 13934 1331 5490.0 6252.0 8212 637
412 84012 905 4351 8139 3884 1331 5490.0 10668.0 7216 5174
413 87336 550 6923 4149 20375 1331 5490.0 3288.0 12145 5318
414 17728 2750 6810 6337 1859 1331 5490.0 2816.0 12107 8083
415 40296 10133 3962 4401 13613 1331 5490.0 452.0 9648 8086
416 73394 10728 8841 3781 594 1331 5490.0 7968.0 993 4939
417 118410 10728 1004 1893 1726 1331 5490.0 4674.0 6220 7308
418 16806 905 4448 9667 19409 1331 5490.0 11331.0 8695 7688
419 66479 10133 3962 6053 20022 1331 5490.0 12005 4247
420 90328 10728 4448 2393 7359 1331 5490.0 2765.0 8695 7688
421 46784 10133 3080 7412 12094 1331 5490.0 183.0 4263 2367
422 82216 10728 562 219 23469 1331 5490.0 11746.0 1203 6643
423 412 10728 566 12068 15316 1331 5490.0 11605.0 496 7067
424 5045 10728 3087 3398 8402 1331 5490.0 3757.0 9062 3458
425 22956 550 2734 9500 16635 1331 5490.0 2304.0 5574 169
426 142801 2750 6810 12753 13301 1331 5490.0 1862.0 10079 4473
427 151340 10728 7665 6300 5515 1331 5490.0 916.0 11748 4356
428 67296 10728 7583 696 9377 1331 5490.0 6107.0 6030 5989
429 41923 10728 8600 6300 5515 1331 5490.0 916.0 8747 7989
430 117410 10728 8127 11242 9728 1331 5490.0 11470.0 9838 570
431 139897 10728 4448 924 21423 1331 5490.0 10542.0 12228 8718
432 6300 2750 2734 8041 6798 1331 5490.0 711.0 7698 1035
433 71404 10728 4351 3781 594 1331 5490.0 7968.0 4928 8818
434 77825 905 1004 5863 1194 1331 5490.0 6118.0 6220 7308
435 94778 10728 4448 10522 4738 1331 5490.0 9127.0 8695 7688
436 91779 10728 566 9293 1136 1331 5490.0 13617.0 496 7067
437 40277 550 6648 11019 22714 1331 5490.0 1069.0 5281 1610
438 22792 10728 1941 1876 19568 1331 5490.0 3734.0 10167 10122
439 136217 10728 7565 2393 7359 1331 5490.0 2765.0 293 5494
440 125663 10728 7230 11242 9728 1331 5490.0 11470.0 11277 10988
441 66229 10133 1004 3166 23012 1331 5490.0 3341.0 10961 10789
442 9095 905 6805 7302 15180 1331 5490.0 8712.0 9060 7178
443 73836 10728 11044 3731 16960 1331 5490.0 9412.0 3423 10109
444 116018 10728 7230 10095 3395 1331 5490.0 3630.0 11277 10988
445 121817 10728 4448 1893 1726 1331 5490.0 4674.0 8695 7688
446 63363 550 2734 10891 5037 1331 5490.0 13689.0 84 6098
447 136254 10728 5205 3731 16960 1331 5490.0 9412.0 6478 844
448 148707 10728 1435 11806 11363 1331 5490.0 3869.0 7993 7839
449 127694 10728 5987 1893 1726 1331 5490.0 4674.0 11454 8747
450 78192 10728 566 12498 1026 1331 5490.0 6554.0 496 7067
451 52646 550 7709 4631 16086 1331 5490.0 2249.0 3948 2570
452 129120 550 1004 4149 20375 1331 5490.0 3288.0 10961 10789
453 118757 10728 2123 4717 2168 1331 5490.0 1820.0 8751 11099
454 33593 10728 1004 424 1544 1331 5490.0 8084.0 6220 7308
455 135746 10728 4351 2393 7359 1331 5490.0 2765.0 12161 4725
456 8324 10728 4351 4419 19766 1331 5490.0 10053.0 8212 637
457 44090 550 4448 3893 7064 1331 5490.0 4949.0 12228 8718
458 1094 10728 1004 2393 7359 1331 5490.0 2765.0 6220 7308
459 79187 10699 3080 9293 1136 1331 5490.0 7844.0 8879 11361
460 99692 10133 225 7412 12094 1331 5490.0 183.0 9529 6714
461 7697 10133 2870 3166 23012 1331 5490.0 3341.0 4289 4768
462 5405 10728 4351 11242 9728 1331 5490.0 11470.0 1759 10739
463 152451 10728 2142 9293 1136 1331 5490.0 13617.0 9372 9736
464 135625 10728 7565 424 1544 1331 5490.0 8084.0 293 5494
465 19823 550 5193 2070 12178 1331 5490.0 12437.0 10497 7014
466 62394 5111 1296 7887 21946 1331 5490.0 4969.0 8029 266
467 81412 10728 6597 6300 5515 1331 5490.0 916.0 3346 10111
468 101501 550 1004 3893 7064 1331 5490.0 4949.0 6220 7308
469 128554 905 4448 5863 1194 1331 5490.0 6118.0 8695 7688
470 27047 550 2734 9990 10656 1331 5490.0 12360.0 10721 10970
471 112501 550 10802 8847 13219 1331 5490.0 1657.0 8133 1719
472 100620 550 5987 9990 10656 1331 5490.0 12360.0 8239 8155
473 137771 905 4351 11886 22117 1331 5490.0 1362.0 5029 1419
474 99485 905 7565 5863 1194 1331 5490.0 6118.0 293 5494
475 86584 10728 7565 3072 22322 1331 5490.0 11466.0 293 5494
476 95473 10728 566 11365 1678 1331 5490.0 12444.0 496 7067
477 19487 550 1941 7932 18329 1331 5490.0 11598.0 10167 10122
478 35822 550 4351 12054 18743 1331 5490.0 3604.0 463 7738
479 8875 10728 1004 10522 4738 1331 5490.0 9127.0 6220 7308
480 45253 10728 8841 10095 3395 1331 5490.0 3630.0 993 4939
481 105563 550 6847 4769 1790 1331 5490.0 2074.0 5605 8226
482 44031 550 7565 4149 20375 1331 5490.0 3288.0 293 5494
483 137146 10728 9284 3072 22322 1331 5490.0 11466.0 2691 5807
484 64163 5111 3160 7887 21946 1331 5490.0 4969.0 468 9518
485 22025 905 4351 5863 1194 1331 5490.0 6118.0 8607 3368
486 10329 550 7565 11019 22714 1331 5490.0 1069.0 6921 6205
487 63434 2750 6810 4667 15577 1331 5490.0 10048.0 12107 8083
488 114290 10728 4351 2393 7359 1331 5490.0 2765.0 8607 3368
489 129485 10728 4351 2393 7359 1331 5490.0 2765.0 2443 7969
490 22412 10728 4351 6300 5515 1331 5490.0 916.0 4928 8818
491 53813 10728 3575 12068 15316 1331 5490.0 11605.0 5361 4813
492 133268 10699 2734 11063 13550 1331 5490.0 537.0 6391 7789
493 70729 10728 4448 424 1544 1331 5490.0 8084.0 8695 7688
494 37223 10728 566 6300 5515 1331 5490.0 916.0 496 7067
495 16349 10728 7565 10522 4738 1331 5490.0 9127.0 293 5494
496 8537 10699 4493 2622 15821 1331 5490.0 10456.0 6634 2711
497 109704 10728 4351 8923 17405 1331 5490.0 13047.0 5695 3655
498 55354 10728 1941 11242 9728 1331 5490.0 11470.0 10167 10122
499 67069 10728 7565 1893 1726 1331 5490.0 4674.0 293 5494
500 100888 2750 4277 4217 20407 1331 5490.0 2827.0 1092 10993
501 100249 10728 5987 6300 5515 1331 5490.0 916.0 11454 8747
502 2822 10728 1004 3072 22322 1331 5490.0 11466.0 6220 7308
503 56020 905 7565 9667 19409 1331 5490.0 11331.0 293 5494
504 16263 10728 7565 219 23469 1331 5490.0 11746.0 293 5494
505 12783 10699 4351 11563 8635 1331 5490.0 1997.0 7144 8490
506 99876 550 7565 3893 7064 1331 5490.0 4949.0 293 5494
507 48203 905 1004 9667 19409 1331 5490.0 11331.0 6220 7308
508 49641 10133 3962 10655 9580 1331 5490.0 6815.0 12005 4247
509 129655 10728 6910 6300 5515 1331 5490.0 916.0 11748 4356
510 128043 2750 4277 8041 6798 1331 5490.0 711.0 1092 10993
511 64265 10728 2142 6300 5515 1331 5490.0 916.0 9372 9736

24
exports/observation.sql Normal file
View File

@ -0,0 +1,24 @@
SELECT
(SELECT encoded FROM wgan_original_pseudo.map WHERE table='observation' AND field = 'observation_id' AND CAST(values AS STRING)=CAST(observation.observation_id AS STRING ) ) as observation_id,
(SELECT encoded FROM wgan_original_pseudo.map WHERE table='observation' AND field = 'person_id' AND CAST(values AS STRING)=CAST(observation.person_id AS STRING ) ) as person_id,
(SELECT encoded FROM wgan_original_pseudo.map WHERE table='observation' AND field = 'observation_concept_id' AND CAST(values AS STRING)=CAST(observation.observation_concept_id AS STRING ) ) as observation_concept_id,
(SELECT encoded FROM wgan_original_pseudo.map WHERE table='observation' AND field = 'observation_date' AND CAST(values AS STRING)=CAST(observation.observation_date AS STRING ) ) as observation_date,
(SELECT encoded FROM wgan_original_pseudo.map WHERE table='observation' AND field = 'observation_datetime' AND CAST(values AS STRING)=CAST(observation.observation_datetime AS STRING ) ) as observation_datetime,
(SELECT encoded FROM wgan_original_pseudo.map WHERE table='observation' AND field = 'observation_type_concept_id' AND CAST(values AS STRING)=CAST(observation.observation_type_concept_id AS STRING ) ) as observation_type_concept_id,
(SELECT encoded FROM wgan_original_pseudo.map WHERE table='observation' AND field = 'value_as_number' AND CAST(values AS STRING)=CAST(observation.value_as_number AS STRING ) ) as value_as_number,
(SELECT encoded FROM wgan_original_pseudo.map WHERE table='observation' AND field = 'value_as_string' AND CAST(values AS STRING)=CAST(observation.value_as_string AS STRING ) ) as value_as_string,
(SELECT encoded FROM wgan_original_pseudo.map WHERE table='observation' AND field = 'value_as_concept_id' AND CAST(values AS STRING)=CAST(observation.value_as_concept_id AS STRING ) ) as value_as_concept_id,
(SELECT encoded FROM wgan_original_pseudo.map WHERE table='observation' AND field = 'qualifier_concept_id' AND CAST(values AS STRING)=CAST(observation.qualifier_concept_id AS STRING ) ) as qualifier_concept_id,
(SELECT encoded FROM wgan_original_pseudo.map WHERE table='observation' AND field = 'unit_concept_id' AND CAST(values AS STRING)=CAST(observation.unit_concept_id AS STRING ) ) as unit_concept_id,
(SELECT encoded FROM wgan_original_pseudo.map WHERE table='observation' AND field = 'provider_id' AND CAST(values AS STRING)=CAST(observation.provider_id AS STRING ) ) as provider_id,
(SELECT encoded FROM wgan_original_pseudo.map WHERE table='observation' AND field = 'visit_occurrence_id' AND CAST(values AS STRING)=CAST(observation.visit_occurrence_id AS STRING ) ) as visit_occurrence_id,
(SELECT encoded FROM wgan_original_pseudo.map WHERE table='observation' AND field = 'observation_source_value' AND CAST(values AS STRING)=CAST(observation.observation_source_value AS STRING ) ) as observation_source_value,
(SELECT encoded FROM wgan_original_pseudo.map WHERE table='observation' AND field = 'observation_source_concept_id' AND CAST(values AS STRING)=CAST(observation.observation_source_concept_id AS STRING ) ) as observation_source_concept_id,
(SELECT encoded FROM wgan_original_pseudo.map WHERE table='observation' AND field = 'unit_source_value' AND CAST(values AS STRING)=CAST(observation.unit_source_value AS STRING ) ) as unit_source_value,
(SELECT encoded FROM wgan_original_pseudo.map WHERE table='observation' AND field = 'qualifier_source_value' AND CAST(values AS STRING)=CAST(observation.qualifier_source_value AS STRING ) ) as qualifier_source_value,
(SELECT encoded FROM wgan_original_pseudo.map WHERE table='observation' AND field = 'value_source_concept_id' AND CAST(values AS STRING)=CAST(observation.value_source_concept_id AS STRING ) ) as value_source_concept_id,
(SELECT encoded FROM wgan_original_pseudo.map WHERE table='observation' AND field = 'value_source_value' AND CAST(values AS STRING)=CAST(observation.value_source_value AS STRING ) ) as value_source_value,
(SELECT encoded FROM wgan_original_pseudo.map WHERE table='observation' AND field = 'questionnaire_response_id' AND CAST(values AS STRING)=CAST(observation.questionnaire_response_id AS STRING ) ) as questionnaire_response_id
FROM wgan_original.observation
WHERE
REGEXP_CONTAINS(UPPER(observation_source_value),'ICD')

10
exports/sample.csv Normal file
View File

@ -0,0 +1,10 @@
id,first_name,last_name,age,gender
100,steve,nyemba,40,m
101,elon,nyemba,5,m
200,steve,mqueen,80,m
201,james,dean,80,m
300,james,bond,50,m
400,elon,musk,40,m
401,kevin,james,50,m
303,kevin,johnson,40,m
103,Bari,nyemba,5,f
1 id first_name last_name age gender
2 100 steve nyemba 40 m
3 101 elon nyemba 5 m
4 200 steve mqueen 80 m
5 201 james dean 80 m
6 300 james bond 50 m
7 400 elon musk 40 m
8 401 kevin james 50 m
9 303 kevin johnson 40 m
10 103 Bari nyemba 5 f

546
gan.py Normal file
View File

@ -0,0 +1,546 @@
"""
usage :
optional :
--num_gpu number of gpus to use will default to 1
--epoch steps per epoch default to 256
"""
import tensorflow as tf
from tensorflow.contrib.layers import l2_regularizer
import numpy as np
import pandas as pd
import time
import os
import sys
from params import SYS_ARGS
from bridge import Binary
import json
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# STEPS_PER_EPOCH = int(SYS_ARGS['epoch']) if 'epoch' in SYS_ARGS else 256
# NUM_GPUS = 1 if 'num_gpu' not in SYS_ARGS else int(SYS_ARGS['num_gpu'])
# BATCHSIZE_PER_GPU = 2000
# TOTAL_BATCHSIZE = BATCHSIZE_PER_GPU * NUM_GPUS
class void :
pass
class GNet :
"""
This is the base class of a generative network functions, the details will be implemented in the subclasses.
An instance of this class is accessed as follows
object.layers.normalize applies batch normalization or otherwise
obect.get.variables instanciate variables on cpu and return a reference (tensor)
"""
def __init__(self,**args):
self.layers = void()
self.layers.normalize = self.normalize
self.get = void()
self.get.variables = self._variable_on_cpu
self.NUM_GPUS = 1
self.X_SPACE_SIZE = args['real'].shape[1] if 'real' in args else 854
self.G_STRUCTURE = [128,128] #[self.X_SPACE_SIZE, self.X_SPACE_SIZE]
self.D_STRUCTURE = [self.X_SPACE_SIZE,256,128] #[self.X_SPACE_SIZE, self.X_SPACE_SIZE*2, self.X_SPACE_SIZE] #-- change 854 to number of diagnosis
# self.NUM_LABELS = 8 if 'label' not in args elif len(args['label'].shape) args['label'].shape[1]
if 'label' in args and len(args['label'].shape) == 2 :
self.NUM_LABELS = args['label'].shape[1]
elif 'label' in args and len(args['label']) == 1 :
self.NUM_LABELS = args['label'].shape[0]
else:
self.NUM_LABELS = 8
self.Z_DIM = 128 #self.X_SPACE_SIZE
self.BATCHSIZE_PER_GPU = args['real'].shape[0] if 'real' in args else 256
self.TOTAL_BATCHSIZE = self.BATCHSIZE_PER_GPU * self.NUM_GPUS
self.STEPS_PER_EPOCH = 256 #int(np.load('ICD9/train.npy').shape[0] / 2000)
self.MAX_EPOCHS = 10 if 'max_epochs' not in args else int(args['max_epochs'])
self.ROW_COUNT = args['real'].shape[0] if 'real' in args else 100
self.CONTEXT = args['context']
self.ATTRIBUTES = {"id":args['column_id'] if 'column_id' in args else None,"synthetic":args['column'] if 'column' in args else None}
self._REAL = args['real'] if 'real' in args else None
self._LABEL = args['label'] if 'label' in args else None
self.init_logs(**args)
def init_logs(self,**args):
self.log_dir = args['logs'] if 'logs' in args else 'logs'
self.mkdir(self.log_dir)
#
#
for key in ['train','output'] :
self.mkdir(os.sep.join([self.log_dir,key]))
self.mkdir (os.sep.join([self.log_dir,key,self.CONTEXT]))
self.train_dir = os.sep.join([self.log_dir,'train',self.CONTEXT])
self.out_dir = os.sep.join([self.log_dir,'output',self.CONTEXT])
def load_meta(self,column):
"""
This function is designed to accomodate the uses of the sub-classes outside of a strict dependency model.
Because prediction and training can happen independently
"""
_name = os.sep.join([self.out_dir,'meta-'+column+'.json'])
if os.path.exists(_name) :
attr = json.loads((open(_name)).read())
for key in attr :
value = attr[key]
setattr(self,key,value)
self.train_dir = os.sep.join([self.log_dir,'train',self.CONTEXT])
self.out_dir = os.sep.join([self.log_dir,'output',self.CONTEXT])
def log_meta(self,**args) :
object = {
'CONTEXT':self.CONTEXT,
'ATTRIBUTES':self.ATTRIBUTES,
'BATCHSIZE_PER_GPU':self.BATCHSIZE_PER_GPU,
'Z_DIM':self.Z_DIM,
"X_SPACE_SIZE":self.X_SPACE_SIZE,
"D_STRUCTURE":self.D_STRUCTURE,
"G_STRUCTURE":self.G_STRUCTURE,
"NUM_GPUS":self.NUM_GPUS,
"NUM_LABELS":self.NUM_LABELS,
"MAX_EPOCHS":self.MAX_EPOCHS,
"ROW_COUNT":self.ROW_COUNT
}
if args and 'key' in args and 'value' in args :
key = args['key']
value= args['value']
object[key] = value
_name = os.sep.join([self.out_dir,'meta-'+SYS_ARGS['column']])
f = open(_name+'.json','w')
f.write(json.dumps(object))
def mkdir (self,path):
if not os.path.exists(path) :
os.mkdir(path)
def normalize(self,**args):
"""
This function will perform a batch normalization on an network layer
inputs input layer of the neural network
name name of the scope the
labels labels (attributes not synthesized) by default None
n_labels number of labels default None
"""
inputs = args['inputs']
name = args['name']
labels = None if 'labels' not in args else args['labels']
n_labels= None if 'n_labels' not in args else args['n_labels']
shift = [0] if self.__class__.__name__.lower() == 'generator' else [1] #-- not sure what this is doing
mean, var = tf.nn.moments(inputs, shift, keep_dims=True)
shape = inputs.shape[1].value
offset_m = self.get.variables(shape=[n_labels,shape], name='offset'+name,
initializer=tf.zeros_initializer)
scale_m = self.get.variables(shape=[n_labels,shape], name='scale'+name,
initializer=tf.ones_initializer)
offset = tf.nn.embedding_lookup(offset_m, labels)
scale = tf.nn.embedding_lookup(scale_m, labels)
result = tf.nn.batch_normalization(inputs, mean, var, offset, scale, 1e-8)
return result
def _variable_on_cpu(self,**args):
"""
This function makes sure variables/tensors are not created on the GPU but rather on the CPU
"""
name = args['name']
shape = args['shape']
initializer=None if 'initializer' not in args else args['initializer']
with tf.device('/cpu:0') :
cpu_var = tf.compat.v1.get_variable(name,shape,initializer= initializer)
return cpu_var
def average_gradients(self,tower_grads):
average_grads = []
for grad_and_vars in zip(*tower_grads):
grads = []
for g, _ in grad_and_vars:
expanded_g = tf.expand_dims(g, 0)
grads.append(expanded_g)
grad = tf.concat(axis=0, values=grads)
grad = tf.reduce_mean(grad, 0)
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads
class Generator (GNet):
"""
This class is designed to handle generation of candidate datasets for this it will aggregate a discriminator, this allows the generator not to be random
"""
def __init__(self,**args):
GNet.__init__(self,**args)
self.discriminator = Discriminator(**args)
def loss(self,**args):
fake = args['fake']
label = args['label']
y_hat_fake = self.discriminator.network(inputs=fake, label=label)
all_regs = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
loss = -tf.reduce_mean(y_hat_fake) + sum(all_regs)
tf.add_to_collection('glosses', loss)
return loss, loss
def load_meta(self, column):
super().load_meta(column)
self.discriminator.load_meta(column)
def network(self,**args) :
"""
This function will build the network that will generate the synthetic candidates
:inputs matrix of data that we need
:dim dimensions of ...
"""
x = args['inputs']
tmp_dim = self.Z_DIM if 'dim' not in args else args['dim']
label = args['label']
with tf.compat.v1.variable_scope('G', reuse=tf.compat.v1.AUTO_REUSE , regularizer=l2_regularizer(0.00001)):
for i, dim in enumerate(self.G_STRUCTURE[:-1]):
kernel = self.get.variables(name='W_' + str(i), shape=[tmp_dim, dim])
h1 = self.normalize(inputs=tf.matmul(x, kernel),shift=0, name='cbn' + str(i), labels=label, n_labels=self.NUM_LABELS)
h2 = tf.nn.relu(h1)
x = x + h2
tmp_dim = dim
i = len(self.G_STRUCTURE) - 1
#
# This seems to be an extra hidden layer:
# It's goal is to map continuous values to discrete values (pre-trained to do this)
kernel = self.get.variables(name='W_' + str(i), shape=[tmp_dim, self.G_STRUCTURE[-1]])
h1 = self.normalize(inputs=tf.matmul(x, kernel), name='cbn' + str(i),
labels=label, n_labels=self.NUM_LABELS)
h2 = tf.nn.tanh(h1)
x = x + h2
# This seems to be the output layer
#
kernel = self.get.variables(name='W_' + str(i+1), shape=[self.Z_DIM, self.X_SPACE_SIZE])
bias = self.get.variables(name='b_' + str(i+1), shape=[self.X_SPACE_SIZE])
x = tf.nn.sigmoid(tf.add(tf.matmul(x, kernel), bias))
return x
class Discriminator(GNet):
def __init__(self,**args):
GNet.__init__(self,**args)
def network(self,**args):
"""
This function will apply a computational graph on a dataset passed in with the associated labels and the last layer must have a single output (neuron)
:inputs
:label
"""
x = args['inputs']
print ()
print (x[:3,:])
print()
label = args['label']
with tf.compat.v1.variable_scope('D', reuse=tf.compat.v1.AUTO_REUSE , regularizer=l2_regularizer(0.00001)):
for i, dim in enumerate(self.D_STRUCTURE[1:]):
kernel = self.get.variables(name='W_' + str(i), shape=[self.D_STRUCTURE[i], dim])
bias = self.get.variables(name='b_' + str(i), shape=[dim])
print (["\t",bias,kernel])
x = tf.nn.relu(tf.add(tf.matmul(x, kernel), bias))
x = self.normalize(inputs=x, name='cln' + str(i), shift=1,labels=label, n_labels=self.NUM_LABELS)
i = len(self.D_STRUCTURE)
kernel = self.get.variables(name='W_' + str(i), shape=[self.D_STRUCTURE[-1], 1])
bias = self.get.variables(name='b_' + str(i), shape=[1])
y = tf.add(tf.matmul(x, kernel), bias)
return y
def loss(self,**args) :
"""
This function compute the loss of
:real
:fake
:label
"""
real = args['real']
fake = args['fake']
label = args['label']
epsilon = tf.random.uniform(shape=[self.BATCHSIZE_PER_GPU,1],minval=0,maxval=1)
x_hat = real + epsilon * (fake - real)
y_hat_fake = self.network(inputs=fake, label=label)
y_hat_real = self.network(inputs=real, label=label)
y_hat = self.network(inputs=x_hat, label=label)
grad = tf.gradients(y_hat, [x_hat])[0]
slopes = tf.sqrt(tf.reduce_sum(tf.square(grad), 1))
gradient_penalty = tf.reduce_mean((slopes - 1.) ** 2)
all_regs = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
w_distance = -tf.reduce_mean(y_hat_real) + tf.reduce_mean(y_hat_fake)
loss = w_distance + 10 * gradient_penalty + sum(all_regs)
tf.add_to_collection('dlosses', loss)
return w_distance, loss
class Train (GNet):
def __init__(self,**args):
GNet.__init__(self,**args)
self.generator = Generator(**args)
self.discriminator = Discriminator(**args)
self._REAL = args['real']
self._LABEL= args['label']
# print ([" *** ",self.BATCHSIZE_PER_GPU])
self.log_meta()
def load_meta(self, column):
"""
This function will delegate the calls to load meta data to it's dependents
column name
"""
super().load_meta(column)
self.generator.load_meta(column)
self.discriminator.load_meta(column)
def loss(self,**args):
"""
This function will compute a "tower" loss of the generated candidate against real data
Training will consist in having both generator and discriminators
:scope
:stage
:real
:label
"""
scope = args['scope']
stage = args['stage']
real = args['real']
label = args['label']
label = tf.cast(label, tf.int32)
#
# @TODO: Ziqi needs to explain what's going on here
m = [[i] for i in np.arange(self._LABEL.shape[1]-2)]
label = label[:, 1] * len(m) + tf.squeeze(
tf.matmul(label[:, 2:], tf.constant(m, dtype=tf.int32))
)
# label = label[:,1] * 4 + tf.squeeze( label[:,2]*[[0],[1],[2],[3]] )
z = tf.random.normal(shape=[self.BATCHSIZE_PER_GPU, self.Z_DIM])
fake = self.generator.network(inputs=z, label=label)
if stage == 'D':
w, loss = self.discriminator.loss(real=real, fake=fake, label=label)
losses = tf.get_collection('dlosses', scope)
else:
w, loss = self.generator.loss(fake=fake, label=label)
losses = tf.get_collection('glosses', scope)
total_loss = tf.add_n(losses, name='total_loss')
return total_loss, w
def input_fn(self):
"""
This function seems to produce
"""
features_placeholder = tf.compat.v1.placeholder(shape=self._REAL.shape, dtype=tf.float32)
labels_placeholder = tf.compat.v1.placeholder(shape=self._LABEL.shape, dtype=tf.float32)
dataset = tf.data.Dataset.from_tensor_slices((features_placeholder, labels_placeholder))
dataset = dataset.repeat(10000)
dataset = dataset.batch(batch_size=self.BATCHSIZE_PER_GPU)
dataset = dataset.prefetch(1)
iterator = dataset.make_initializable_iterator()
# next_element = iterator.get_next()
# init_op = iterator.initializer
return iterator, features_placeholder, labels_placeholder
def network(self,**args):
# def graph(stage, opt):
# global_step = tf.get_variable(stage+'_step', [], initializer=tf.constant_initializer(0), trainable=False)
stage = args['stage']
opt = args['opt']
tower_grads = []
per_gpu_w = []
iterator, features_placeholder, labels_placeholder = self.input_fn()
with tf.compat.v1.variable_scope(tf.compat.v1.get_variable_scope()):
for i in range(self.NUM_GPUS):
with tf.device('/gpu:%d' % i):
with tf.name_scope('%s_%d' % ('TOWER', i)) as scope:
(real, label) = iterator.get_next()
loss, w = self.loss(scope=scope, stage=stage, real=self._REAL, label=self._LABEL)
tf.get_variable_scope().reuse_variables()
vars_ = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=stage)
grads = opt.compute_gradients(loss, vars_)
tower_grads.append(grads)
per_gpu_w.append(w)
grads = self.average_gradients(tower_grads)
apply_gradient_op = opt.apply_gradients(grads)
mean_w = tf.reduce_mean(per_gpu_w)
train_op = apply_gradient_op
return train_op, mean_w, iterator, features_placeholder, labels_placeholder
def apply(self,**args):
# max_epochs = args['max_epochs'] if 'max_epochs' in args else 10
REAL = self._REAL
LABEL= self._LABEL
with tf.device('/cpu:0'):
opt_d = tf.compat.v1.train.AdamOptimizer(1e-4)
opt_g = tf.compat.v1.train.AdamOptimizer(1e-4)
train_d, w_distance, iterator_d, features_placeholder_d, labels_placeholder_d = self.network(stage='D', opt=opt_d)
train_g, _, iterator_g, features_placeholder_g, labels_placeholder_g = self.network(stage='G', opt=opt_g)
# saver = tf.train.Saver()
saver = tf.compat.v1.train.Saver()
init = tf.global_variables_initializer()
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) as sess:
sess.run(init)
sess.run(iterator_d.initializer,
feed_dict={features_placeholder_d: REAL, labels_placeholder_d: LABEL})
sess.run(iterator_g.initializer,
feed_dict={features_placeholder_g: REAL, labels_placeholder_g: LABEL})
for epoch in range(1, self.MAX_EPOCHS + 1):
start_time = time.time()
w_sum = 0
for i in range(self.STEPS_PER_EPOCH):
for _ in range(2):
_, w = sess.run([train_d, w_distance])
w_sum += w
sess.run(train_g)
duration = time.time() - start_time
assert not np.isnan(w_sum), 'Model diverged with loss = NaN'
format_str = 'epoch: %d, w_distance = %f (%.1f)'
print(format_str % (epoch, -w_sum/(self.STEPS_PER_EPOCH*2), duration))
if epoch % self.MAX_EPOCHS == 0:
_name = os.sep.join([self.train_dir,self.ATTRIBUTES['synthetic']])
# saver.save(sess, self.train_dir, write_meta_graph=False, global_step=epoch)
saver.save(sess, _name, write_meta_graph=False, global_step=epoch)
#
#
class Predict(GNet):
"""
This class uses synthetic data given a learned model
"""
def __init__(self,**args):
GNet.__init__(self,**args)
self.generator = Generator(**args)
self.values = values
def load_meta(self, column):
super().load_meta(column)
self.generator.load_meta(column)
def apply(self,**args):
# print (self.train_dir)
model_dir = os.sep.join([self.train_dir,self.ATTRIBUTES['synthetic']+'-'+str(self.MAX_EPOCHS)])
demo = self._LABEL #np.zeros([self.ROW_COUNT,self.NUM_LABELS]) #args['de"shape":{"LABEL":list(self._LABEL.shape)} mo']
tf.compat.v1.reset_default_graph()
z = tf.random.normal(shape=[self.BATCHSIZE_PER_GPU, self.Z_DIM])
y = tf.compat.v1.placeholder(shape=[self.BATCHSIZE_PER_GPU, self.NUM_LABELS], dtype=tf.int32)
ma = [[i] for i in np.arange(self.NUM_LABELS - 2)]
label = y[:, 1] * len(ma) + tf.squeeze(tf.matmul(y[:, 2:], tf.constant(ma, dtype=tf.int32)))
fake = self.generator.network(inputs=z, label=label)
init = tf.compat.v1.global_variables_initializer()
saver = tf.compat.v1.train.Saver()
with tf.compat.v1.Session() as sess:
# sess.run(init)
saver.restore(sess, model_dir)
labels = np.zeros((self.ROW_COUNT,self.NUM_LABELS) )
labels= demo
f = sess.run(fake,feed_dict={y:labels})
#
# if we are dealing with numeric values only we can perform a simple marginal sum against the indexes
#
df = ( pd.DataFrame(np.round(f).astype(np.int32),columns=values))
# i = df.T.index.astype(np.int32) #-- These are numeric pseudonyms
# df = (i * df).sum(axis=1)
#
# In case we are dealing with actual values like diagnosis codes we can perform
#
r = np.zeros((self.ROW_COUNT,1))
for col in df :
i = np.where(df[col])[0]
r[i] = col
df = pd.DataFrame(r,columns=[self.ATTRIBUTES['synthetic']])
return df.to_dict(orient='list')
# count = str(len(os.listdir(self.out_dir)))
# _name = os.sep.join([self.out_dir,self.CONTEXT+'-'+count+'.csv'])
# df.to_csv(_name,index=False)
# output.extend(np.round(f))
# for m in range(2):
# for n in range(2, self.NUM_LABELS):
# idx1 = (demo[:, m] == 1)
# idx2 = (demo[:, n] == 1)
# idx = [idx1[j] and idx2[j] for j in range(len(idx1))]
# num = np.sum(idx)
# print ("_____________________")
# print (idx1)
# print (idx2)
# print (idx)
# print (num)
# print ("_____________________")
# nbatch = int(np.ceil(num / self.BATCHSIZE_PER_GPU))
# label_input = np.zeros((nbatch*self.BATCHSIZE_PER_GPU, self.NUM_LABELS))
# label_input[:, n] = 1
# label_input[:, m] = 1
# output = []
# for i in range(nbatch):
# f = sess.run(fake,feed_dict={y: label_input[i* self.BATCHSIZE_PER_GPU:(i+1)* self.BATCHSIZE_PER_GPU]})
# output.extend(np.round(f))
# output = np.array(output)[:num]
# print ([m,n,output])
# np.save(self.out_dir + str(m) + str(n), output)
if __name__ == '__main__' :
#
# Now we get things done ...
column = SYS_ARGS['column']
column_id = SYS_ARGS['id'] if 'id' in SYS_ARGS else 'person_id'
df = pd.read_csv(SYS_ARGS['raw-data'])
LABEL = pd.get_dummies(df[column_id]).astype(np.float32).values
context = SYS_ARGS['raw-data'].split(os.sep)[-1:][0][:-4]
if set(['train','learn']) & set(SYS_ARGS.keys()):
df = pd.read_csv(SYS_ARGS['raw-data'])
# cols = SYS_ARGS['column']
# _map,_df = (Binary()).Export(df)
# i = np.arange(_map[column]['start'],_map[column]['end'])
max_epochs = np.int32(SYS_ARGS['max_epochs']) if 'max_epochs' in SYS_ARGS else 10
# REAL = _df[:,i]
REAL = pd.get_dummies(df[column]).astype(np.float32).values
LABEL = pd.get_dummies(df[column_id]).astype(np.float32).values
trainer = Train(context=context,max_epochs=max_epochs,real=REAL,label=LABEL,column=column,column_id=column_id)
trainer.apply()
#
# We should train upon this data
#
# -- we need to convert the data-frame to binary matrix, given a column
#
pass
elif 'generate' in SYS_ARGS:
values = df[column].unique().tolist()
values.sort()
p = Predict(context=context,label=LABEL,values=values)
p.load_meta(column)
r = p.apply()
print (df)
print ()
df[column] = r[column]
print (df)
else:
print (SYS_ARGS.keys())
print (__doc__)
pass

286
multi_GPU.py Normal file
View File

@ -0,0 +1,286 @@
import tensorflow as tf
from tensorflow.contrib.layers import l2_regularizer
import numpy as np
import time
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
#### id of gpu to use
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
#### training data
#### shape=(n_sample, n_code=854)
REAL = np.load('')
#### demographic for training data
#### shape=(n_sample, 6)
#### if sample_x is male, then LABEL[x,0]=1, else LABEL[x,1]=1
#### if sample_x's is within 0-17, then LABEL[x,2]=1
#### elif sample_x's is within 18-44, then LABEL[x,3]=1
#### elif sample_x's is within 45-64, then LABEL[x,4]=1
#### elif sample_x's is within 64-, then LABEL[x,5]=1
LABEL = np.load('')
#### training parameters
NUM_GPUS = 1
BATCHSIZE_PER_GPU = 2000
TOTAL_BATCHSIZE = BATCHSIZE_PER_GPU * NUM_GPUS
STEPS_PER_EPOCH = int(np.load('ICD9/train.npy').shape[0] / 2000)
g_structure = [128, 128]
d_structure = [854, 256, 128]
z_dim = 128
def _variable_on_cpu(name, shape, initializer=None):
with tf.device('/cpu:0'):
var = tf.get_variable(name, shape, initializer=initializer)
return var
def batchnorm(inputs, name, labels=None, n_labels=None):
mean, var = tf.nn.moments(inputs, [0], keep_dims=True)
shape = mean.shape[1].value
offset_m = _variable_on_cpu(shape=[n_labels,shape], name='offset'+name,
initializer=tf.zeros_initializer)
scale_m = _variable_on_cpu(shape=[n_labels,shape], name='scale'+name,
initializer=tf.ones_initializer)
offset = tf.nn.embedding_lookup(offset_m, labels)
scale = tf.nn.embedding_lookup(scale_m, labels)
result = tf.nn.batch_normalization(inputs, mean, var, offset, scale, 1e-8)
return result
def layernorm(inputs, name, labels=None, n_labels=None):
mean, var = tf.nn.moments(inputs, [1], keep_dims=True)
shape = inputs.shape[1].value
offset_m = _variable_on_cpu(shape=[n_labels,shape], name='offset'+name,
initializer=tf.zeros_initializer)
scale_m = _variable_on_cpu(shape=[n_labels,shape], name='scale'+name,
initializer=tf.ones_initializer)
offset = tf.nn.embedding_lookup(offset_m, labels)
scale = tf.nn.embedding_lookup(scale_m, labels)
result = tf.nn.batch_normalization(inputs, mean, var, offset, scale, 1e-8)
return result
def input_fn():
features_placeholder = tf.placeholder(shape=REAL.shape, dtype=tf.float32)
labels_placeholder = tf.placeholder(shape=LABEL.shape, dtype=tf.float32)
dataset = tf.data.Dataset.from_tensor_slices((features_placeholder, labels_placeholder))
dataset = dataset.repeat(10000)
dataset = dataset.batch(batch_size=BATCHSIZE_PER_GPU)
dataset = dataset.prefetch(1)
iterator = dataset.make_initializable_iterator()
# next_element = iterator.get_next()
# init_op = iterator.initializer
return iterator, features_placeholder, labels_placeholder
def generator(z, label):
x = z
tmp_dim = z_dim
with tf.variable_scope('G', reuse=tf.AUTO_REUSE, regularizer=l2_regularizer(0.00001)):
for i, dim in enumerate(g_structure[:-1]):
kernel = _variable_on_cpu('W_' + str(i), shape=[tmp_dim, dim])
h1 = batchnorm(tf.matmul(x, kernel), name='cbn' + str(i), labels=label, n_labels=8)
h2 = tf.nn.relu(h1)
x = x + h2
tmp_dim = dim
i = len(g_structure) - 1
kernel = _variable_on_cpu('W_' + str(i), shape=[tmp_dim, g_structure[-1]])
h1 = batchnorm(tf.matmul(x, kernel), name='cbn' + str(i),
labels=label, n_labels=8)
h2 = tf.nn.tanh(h1)
x = x + h2
kernel = _variable_on_cpu('W_' + str(i+1), shape=[128, 854])
bias = _variable_on_cpu('b_' + str(i+1), shape=[854])
x = tf.nn.sigmoid(tf.add(tf.matmul(x, kernel), bias))
return x
def discriminator(x, label):
with tf.variable_scope('D', reuse=tf.AUTO_REUSE, regularizer=l2_regularizer(0.00001)):
for i, dim in enumerate(d_structure[1:]):
kernel = _variable_on_cpu('W_' + str(i), shape=[d_structure[i], dim])
bias = _variable_on_cpu('b_' + str(i), shape=[dim])
x = tf.nn.relu(tf.add(tf.matmul(x, kernel), bias))
x = layernorm(x, name='cln' + str(i), labels=label, n_labels=8)
i = len(d_structure)
kernel = _variable_on_cpu('W_' + str(i), shape=[d_structure[-1], 1])
bias = _variable_on_cpu('b_' + str(i), shape=[1])
y = tf.add(tf.matmul(x, kernel), bias)
return y
def compute_dloss(real, fake, label):
epsilon = tf.random_uniform(
shape=[BATCHSIZE_PER_GPU, 1],
minval=0.,
maxval=1.)
x_hat = real + epsilon * (fake - real)
y_hat_fake = discriminator(fake, label)
y_hat_real = discriminator(real, label)
y_hat = discriminator(x_hat, label)
grad = tf.gradients(y_hat, [x_hat])[0]
slopes = tf.sqrt(tf.reduce_sum(tf.square(grad), 1))
gradient_penalty = tf.reduce_mean((slopes - 1.) ** 2)
all_regs = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
w_distance = -tf.reduce_mean(y_hat_real) + tf.reduce_mean(y_hat_fake)
loss = w_distance + 10 * gradient_penalty + sum(all_regs)
tf.add_to_collection('dlosses', loss)
return w_distance, loss
def compute_gloss(fake, label):
y_hat_fake = discriminator(fake, label)
all_regs = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
loss = -tf.reduce_mean(y_hat_fake) + sum(all_regs)
tf.add_to_collection('glosses', loss)
return loss, loss
def tower_loss(scope, stage, real, label):
label = tf.cast(label, tf.int32)
label = label[:, 1] * 4 + tf.squeeze(
tf.matmul(label[:, 2:], tf.constant([[0], [1], [2], [3]], dtype=tf.int32)))
z = tf.random_normal(shape=[BATCHSIZE_PER_GPU, z_dim])
fake = generator(z, label)
if stage == 'D':
w, loss = compute_dloss(real, fake, label)
losses = tf.get_collection('dlosses', scope)
else:
w, loss = compute_gloss(fake, label)
losses = tf.get_collection('glosses', scope)
total_loss = tf.add_n(losses, name='total_loss')
# loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
# loss_averages_op = loss_averages.apply(losses + [total_loss])
#
# with tf.control_dependencies([loss_averages_op]):
# total_loss = tf.identity(total_loss)
return total_loss, w
def average_gradients(tower_grads):
average_grads = []
for grad_and_vars in zip(*tower_grads):
grads = []
for g, _ in grad_and_vars:
expanded_g = tf.expand_dims(g, 0)
grads.append(expanded_g)
grad = tf.concat(axis=0, values=grads)
grad = tf.reduce_mean(grad, 0)
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads
def graph(stage, opt):
# global_step = tf.get_variable(stage+'_step', [], initializer=tf.constant_initializer(0), trainable=False)
tower_grads = []
per_gpu_w = []
iterator, features_placeholder, labels_placeholder = input_fn()
with tf.variable_scope(tf.get_variable_scope()):
for i in range(NUM_GPUS):
with tf.device('/gpu:%d' % i):
with tf.name_scope('%s_%d' % ('TOWER', i)) as scope:
(real, label) = iterator.get_next()
loss, w = tower_loss(scope, stage, real, label)
tf.get_variable_scope().reuse_variables()
vars_ = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=stage)
grads = opt.compute_gradients(loss, vars_)
tower_grads.append(grads)
per_gpu_w.append(w)
grads = average_gradients(tower_grads)
apply_gradient_op = opt.apply_gradients(grads)
mean_w = tf.reduce_mean(per_gpu_w)
train_op = apply_gradient_op
return train_op, mean_w, iterator, features_placeholder, labels_placeholder
def train(max_epochs, train_dir):
with tf.device('/cpu:0'):
opt_d = tf.train.AdamOptimizer(1e-4)
opt_g = tf.train.AdamOptimizer(1e-4)
train_d, w_distance, iterator_d, features_placeholder_d, labels_placeholder_d = graph('D', opt_d)
train_g, _, iterator_g, features_placeholder_g, labels_placeholder_g = graph('G', opt_g)
saver = tf.train.Saver()
init = tf.global_variables_initializer()
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) as sess:
sess.run(init)
sess.run(iterator_d.initializer,
feed_dict={features_placeholder_d: REAL, labels_placeholder_d: LABEL})
sess.run(iterator_g.initializer,
feed_dict={features_placeholder_g: REAL, labels_placeholder_g: LABEL})
for epoch in range(1, max_epochs + 1):
start_time = time.time()
w_sum = 0
for i in range(STEPS_PER_EPOCH):
for _ in range(2):
_, w = sess.run([train_d, w_distance])
w_sum += w
sess.run(train_g)
duration = time.time() - start_time
assert not np.isnan(w_sum), 'Model diverged with loss = NaN'
format_str = 'epoch: %d, w_distance = %f (%.1f)'
print(format_str % (epoch, -w_sum/(STEPS_PER_EPOCH*2), duration))
if epoch % 500 == 0:
# checkpoint_path = os.path.join(train_dir, 'multi')
saver.save(sess, train_dir, write_meta_graph=False, global_step=epoch)
# saver.save(sess, train_dir, global_step=epoch)
def generate(model_dir, synthetic_dir, demo):
tf.reset_default_graph()
z = tf.random_normal(shape=[BATCHSIZE_PER_GPU, z_dim])
y = tf.placeholder(shape=[BATCHSIZE_PER_GPU, 6], dtype=tf.int32)
label = y[:, 1] * 4 + tf.squeeze(tf.matmul(y[:, 2:], tf.constant([[0], [1], [2], [3]], dtype=tf.int32)))
fake = generator(z, label)
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, model_dir)
for m in range(2):
for n in range(2, 6):
idx1 = (demo[:, m] == 1)
idx2 = (demo[:, n] == 1)
idx = [idx1[j] and idx2[j] for j in range(len(idx1))]
num = np.sum(idx)
nbatch = int(np.ceil(num / BATCHSIZE_PER_GPU))
label_input = np.zeros((nbatch*BATCHSIZE_PER_GPU, 6))
label_input[:, n] = 1
label_input[:, m] = 1
output = []
for i in range(nbatch):
f = sess.run(fake,feed_dict={y: label_input[i*BATCHSIZE_PER_GPU:(i+1)*BATCHSIZE_PER_GPU]})
output.extend(np.round(f))
output = np.array(output)[:num]
np.save(synthetic_dir + str(m) + str(n), output)
if __name__ == '__main__':
#### args_1: number of training epochs
#### args_2: dir to save the trained model
train(500, '')
#### args_1: dir of trained model
#### args_2: dir to save synthetic data
#### args_3, label of data-to-be-generated
generate('', '', demo=LABEL)

18
params.py Normal file
View File

@ -0,0 +1,18 @@
import sys
SYS_ARGS = {'context':''}
if len(sys.argv) > 1:
N = len(sys.argv)
for i in range(1,N):
value = None
if sys.argv[i].startswith('--'):
key = sys.argv[i][2:] #.replace('-','')
SYS_ARGS[key] = 1
if i + 1 < N:
value = sys.argv[i + 1] = sys.argv[i+1].strip()
if key and value:
SYS_ARGS[key] = value
i += 2

BIN
params.pyc Normal file

Binary file not shown.

287
test.py Normal file
View File

@ -0,0 +1,287 @@
import tensorflow as tf
from tensorflow.contrib.layers import l2_regularizer
import numpy as np
import time
import os
# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
# os.environ['CUDA_VISIBLE_DEVICES'] = "4,5"
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('train_dir', 'google_cloud_test/',
"""Directory where to store checkpoint. """)
tf.app.flags.DEFINE_string('save_dir', 'google_cloud_test/',
"""Directory where to save generated data. """)
tf.app.flags.DEFINE_integer('max_steps', 100,
"""Number of batches to run in each epoch.""")
tf.app.flags.DEFINE_integer('max_epochs', 100,
"""Number of epochs to run.""")
tf.app.flags.DEFINE_integer('batchsize', 10,
"""Batchsize.""")
tf.app.flags.DEFINE_integer('z_dim', 10,
"""Dimensionality of random input.""")
tf.app.flags.DEFINE_integer('data_dim', 30,
"""Dimensionality of data.""")
tf.app.flags.DEFINE_integer('demo_dim', 8,
"""Dimensionality of demographics.""")
tf.app.flags.DEFINE_float('reg', 0.0001,
"""L2 regularization.""")
g_structure = [FLAGS.z_dim, FLAGS.z_dim]
d_structure = [FLAGS.data_dim, int(FLAGS.data_dim/2), FLAGS.z_dim]
def _variable_on_cpu(name, shape, initializer=None):
with tf.device('/cpu:0'):
var = tf.get_variable(name, shape, initializer=initializer)
return var
def batchnorm(inputs, name, labels=None, n_labels=None):
mean, var = tf.nn.moments(inputs, [0], keep_dims=True)
shape = mean.shape[1].value
offset_m = _variable_on_cpu(shape=[n_labels,shape], name='offset'+name,
initializer=tf.zeros_initializer)
scale_m = _variable_on_cpu(shape=[n_labels,shape], name='scale'+name,
initializer=tf.ones_initializer)
offset = tf.nn.embedding_lookup(offset_m, labels)
scale = tf.nn.embedding_lookup(scale_m, labels)
result = tf.nn.batch_normalization(inputs, mean, var, offset, scale, 1e-8)
return result
def layernorm(inputs, name, labels=None, n_labels=None):
mean, var = tf.nn.moments(inputs, [1], keep_dims=True)
shape = inputs.shape[1].value
offset_m = _variable_on_cpu(shape=[n_labels,shape], name='offset'+name,
initializer=tf.zeros_initializer)
scale_m = _variable_on_cpu(shape=[n_labels,shape], name='scale'+name,
initializer=tf.ones_initializer)
offset = tf.nn.embedding_lookup(offset_m, labels)
scale = tf.nn.embedding_lookup(scale_m, labels)
result = tf.nn.batch_normalization(inputs, mean, var, offset, scale, 1e-8)
return result
def input_fn():
features_placeholder = tf.placeholder(shape=[None, FLAGS.data_dim], dtype=tf.float32)
labels_placeholder = tf.placeholder(shape=[None, 6], dtype=tf.float32)
dataset = tf.data.Dataset.from_tensor_slices((features_placeholder, labels_placeholder))
dataset = dataset.repeat(10000)
dataset = dataset.batch(batch_size=FLAGS.batchsize)
dataset = dataset.prefetch(1)
iterator = dataset.make_initializable_iterator()
return iterator, features_placeholder, labels_placeholder
def generator(z, label):
x = z
tmp_dim = FLAGS.z_dim
with tf.variable_scope('G', reuse=tf.AUTO_REUSE, regularizer=l2_regularizer(FLAGS.reg)):
for i, dim in enumerate(g_structure[:-1]):
kernel = _variable_on_cpu('W_' + str(i), shape=[tmp_dim, dim])
h1 = batchnorm(tf.matmul(x, kernel), name='cbn' + str(i), labels=label, n_labels=FLAGS.demo_dim)
h2 = tf.nn.relu(h1)
x = x + h2
tmp_dim = dim
i = len(g_structure) - 1
kernel = _variable_on_cpu('W_' + str(i), shape=[tmp_dim, g_structure[-1]])
h1 = batchnorm(tf.matmul(x, kernel), name='cbn' + str(i),
labels=label, n_labels=FLAGS.demo_dim)
h2 = tf.nn.tanh(h1)
x = x + h2
kernel = _variable_on_cpu('W_' + str(i+1), shape=[FLAGS.z_dim, FLAGS.data_dim])
bias = _variable_on_cpu('b_' + str(i+1), shape=[FLAGS.data_dim])
x = tf.nn.sigmoid(tf.add(tf.matmul(x, kernel), bias))
return x
def discriminator(x, label):
with tf.variable_scope('D', reuse=tf.AUTO_REUSE, regularizer=l2_regularizer(FLAGS.reg)):
for i, dim in enumerate(d_structure[1:]):
kernel = _variable_on_cpu('W_' + str(i), shape=[d_structure[i], dim])
bias = _variable_on_cpu('b_' + str(i), shape=[dim])
x = tf.nn.relu(tf.add(tf.matmul(x, kernel), bias))
x = layernorm(x, name='cln' + str(i), labels=label, n_labels=FLAGS.demo_dim)
i = len(d_structure)
kernel = _variable_on_cpu('W_' + str(i), shape=[d_structure[-1], 1])
bias = _variable_on_cpu('b_' + str(i), shape=[1])
y = tf.add(tf.matmul(x, kernel), bias)
return y
def compute_dloss(real, fake, label):
epsilon = tf.random_uniform(
shape=[FLAGS.batchsize, 1],
minval=0.,
maxval=1.)
x_hat = real + epsilon * (fake - real)
y_hat_fake = discriminator(fake, label)
y_hat_real = discriminator(real, label)
y_hat = discriminator(x_hat, label)
grad = tf.gradients(y_hat, [x_hat])[0]
slopes = tf.sqrt(tf.reduce_sum(tf.square(grad), 1))
gradient_penalty = tf.reduce_mean((slopes - 1.) ** 2)
all_regs = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
w_distance = -tf.reduce_mean(y_hat_real) + tf.reduce_mean(y_hat_fake)+sum(all_regs)
loss = w_distance + 10 * gradient_penalty
tf.add_to_collection('dlosses', loss)
return w_distance, loss
def compute_gloss(fake, label):
y_hat_fake = discriminator(fake, label)
all_regs = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
loss = -tf.reduce_mean(y_hat_fake)+sum(all_regs)
tf.add_to_collection('glosses', loss)
return loss, loss
def tower_loss(scope, stage, real, label):
label = tf.cast(label, tf.int32)
print ([stage,label.shape])
label = label[:, 1] * 4 + tf.squeeze(
tf.matmul(label[:, 2:], tf.constant([[0], [1], [2], [3]], dtype=tf.int32)))
z = tf.random_normal(shape=[FLAGS.batchsize, FLAGS.z_dim])
fake = generator(z, label)
if stage == 'D':
w, loss = compute_dloss(real, fake, label)
losses = tf.get_collection('dlosses', scope)
else:
w, loss = compute_gloss(fake, label)
losses = tf.get_collection('glosses', scope)
total_loss = tf.add_n(losses, name='total_loss')
return total_loss, w
def average_gradients(tower_grads):
average_grads = []
for grad_and_vars in zip(*tower_grads):
grads = []
for g, _ in grad_and_vars:
expanded_g = tf.expand_dims(g, 0)
grads.append(expanded_g)
grad = tf.concat(axis=0, values=grads)
grad = tf.reduce_mean(grad, 0)
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads
def graph(stage, opt):
tower_grads = []
per_gpu_w = []
iterator, features_placeholder, labels_placeholder = input_fn()
with tf.variable_scope(tf.get_variable_scope()):
for i in range(1):
with tf.device('/cpu:0'):
with tf.name_scope('%s_%d' % ('TOWER', i)) as scope:
(real, label) = iterator.get_next()
loss, w = tower_loss(scope, stage, real, label)
tf.get_variable_scope().reuse_variables()
vars_ = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=stage)
grads = opt.compute_gradients(loss, vars_)
tower_grads.append(grads)
per_gpu_w.append(w)
grads = average_gradients(tower_grads)
apply_gradient_op = opt.apply_gradients(grads)
mean_w = tf.reduce_mean(per_gpu_w)
train_op = apply_gradient_op
return train_op, mean_w, iterator, features_placeholder, labels_placeholder
def train(data, demo):
with tf.device('/cpu:0'):
opt_d = tf.train.AdamOptimizer(1e-4)
opt_g = tf.train.AdamOptimizer(1e-4)
train_d, w_distance, iterator_d, features_placeholder_d, labels_placeholder_d = graph('D', opt_d)
train_g, _, iterator_g, features_placeholder_g, labels_placeholder_g = graph('G', opt_g)
saver = tf.train.Saver()
init = tf.global_variables_initializer()
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) as sess:
sess.run(init)
sess.run(iterator_d.initializer,
feed_dict={features_placeholder_d: data,
labels_placeholder_d: demo})
sess.run(iterator_g.initializer,
feed_dict={features_placeholder_g: data,
labels_placeholder_g: demo})
for epoch in range(1, FLAGS.max_epochs + 1):
start_time = time.time()
w_sum = 0
for i in range(FLAGS.max_steps):
for _ in range(2):
_, w = sess.run([train_d, w_distance])
w_sum += w
sess.run(train_g)
duration = time.time() - start_time
assert not np.isnan(w_sum), 'Model diverged with loss = NaN'
format_str = 'epoch: %d, w_distance = %f (%.1f)'
print(format_str % (epoch, -w_sum/(FLAGS.max_steps*2), duration))
if epoch % FLAGS.max_epochs == 0:
# checkpoint_path = os.path.join(train_dir, 'multi')
saver.save(sess, FLAGS.train_dir + 'emr_wgan', write_meta_graph=False, global_step=epoch)
# saver.save(sess, train_dir, global_step=epoch)
def generate(demo):
z = tf.random_normal(shape=[FLAGS.batchsize, FLAGS.z_dim])
y = tf.placeholder(shape=[FLAGS.batchsize, 6], dtype=tf.int32)
label = y[:, 1] * 4 + tf.squeeze(tf.matmul(y[:, 2:], tf.constant([[0], [1], [2], [3]], dtype=tf.int32)))
fake = generator(z, label)
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, FLAGS.train_dir + 'emr_wgan-' + str(FLAGS.max_epochs))
for m in range(2):
for n in range(2, 6):
idx1 = (demo[:, m] == 1)
idx2 = (demo[:, n] == 1)
idx = [idx1[j] and idx2[j] for j in range(len(idx1))]
num = np.sum(idx)
nbatch = int(np.ceil(num / FLAGS.batchsize))
label_input = np.zeros((nbatch*FLAGS.batchsize, 6))
label_input[:, n] = 1
label_input[:, m] = 1
output = []
for i in range(nbatch):
f = sess.run(fake,feed_dict={y: label_input[i*FLAGS.batchsize:(i+1)*FLAGS.batchsize]})
output.extend(np.round(f))
output = np.array(output)[:num]
np.save(FLAGS.save_dir + 'synthetic_' + str(m) + str(n), output)
def load_data():
data = np.zeros(3000)
idx = np.random.choice(np.arange(3000),size=900)
data[idx] = 1
data = np.reshape(data, (100,30))
idx = np.random.randint(2,6,size=100)
idx2 = np.random.randint(2,size=100)
demo = np.zeros((100,6))
demo[np.arange(100), idx] = 1
demo[np.arange(100), idx2] = 1
return data, demo
if __name__ == '__main__':
data, demo = load_data()
print ([data.shape,demo.shape])
train(data, demo)
# generate(demo)

12
vumc-test.json Normal file
View File

@ -0,0 +1,12 @@
{
"type": "service_account",
"project_id": "aou-res-deid-vumc-test",
"private_key_id": "8b7acef9a1f1137799011cf13cf0906e331c472e",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvAIBADANBgkqhkiG9w0BAQEFAASCBKYwggSiAgEAAoIBAQCYRPv0ZMGLXjva\nVZjJlcApDpXhJl2iDghhG0JqUH1PmuLjMtmhuMSgweq+M3KNF92Wft9Ree+fTN6m\nVtyqZMgz1qXi6I1WJHyT+ndtk4eWlE4O1AxE0QkfLqtj1kafU6Yu2tGpZ23jHFG9\nc7oq1tqPwC39pKE3ScShcpbZxFqvOFwW7ZSHEQ2Zk0/9lA0bfQH+Vaq1JqBbMkCO\nh1p1ptXPHyIoTjgbtQ/3N6JHA9XpqF1DHFQTe6H/4Zc+GUBV8kb/9pdeybcrhd1K\nVzuT6pAkOLQ7Wtq9Hwl3zAF3jyhlEpirYt4tjcw1pq0phhUuDGcLS37cTzWkqekr\nFEp8NkSnAgMBAAECggEAI16Kw+cPigb2ki2l0tVlEGRh7i2SPE1UJvJFCBrwMKiC\noVGzebxIeCrzEwEyT5HGl+mah/tx7KfXY/3zPeUxF9F5MO7hvau2AE2CpkJJkXGb\nfBhHTUjc/JBDoWopd2LfzCxp3Ra4ULPITOBv0vmbRR7Xz/4IsKYC9Zl/btAMXHy4\nJZZuifK8mCD4BDXxG6W2p+jqeKFjKYTuHyCKWy9u8NnnH6eoNMLvewr/P3pPZK9l\nSFQDV0nWU0yZoR4cccYHtq/9Uw1pY7A9iNYI4JnAnPam8Rka0OEgZbqMVsk3FUmA\nG+SOtiJ9iopQsW5g/HTG7Q420gijnfe5IWQK6yLBOQKBgQDNCuGexHMUGB+/bxFK\nnQ+AiktFib76PbMYFSGdsQQYHGcNHXmXRnJbpj/llO7tiWk/akOA0UrjtipXERTP\nYoXRDlghvnluxUYDm+mD94jSe7rE45b+sNH8FyqgrHWJVHSPBcIz0YXCUxRmE9eq\n4BcNfTqtjAl7hasWhGUVlXppawKBgQC+HJn1Lpvp89h+7ge09p6SU6RhAbOygrtA\nBD3Odr6WV6SGXEKyFHSHLkRVA1BFzzTXl3nEJvHFe7I5RNnVzWSqmf4LkBcIDqQO\nmiNb2TbA/h4utlMJvTrit03qdzngvgmoWyKqNpxmj6afNU/up4ck0hqBkJae/FBQ\nkoSwXcA0tQKBgDJzE/JZiasPCHi0nj+Kh27sF/sjGj8+ARvSzzOag1RfYKekce9b\noPWV4TDexS7i2WeGANfoJxICF0bW6BTiu+QlMGAVGpG7ri9jJECZHiwTz290RAmk\nffYVySJBbKX+hrNOCmtviQa4JFO9XBoqCuIBxvc+dnLS/7aJmsmFvtnDAoGAfQRf\n9gzdeN7i+q1bIhSfuIgKa8RrwDMaIgHoBxKtSD6AMd8P+P1cl9zEEMeqDQ4yqKey\n6lvV19D9JY3yVhfIYCv+FOp/Sswd9IBGSkswJ3+0p3E8cAYhaB+0vEAFLpap0S2F\nQTvCY+uJXd74Hm/KflswFQ3ZDtnLkwCXA0fTcpUCgYBMkcE6Bn0tIShaXsaaufIW\nXrJ6gtEUDtUXP85lNO7hUxBWTu2dF6OsgBniNfWypmRecaZsFl/sD6YKT0bV1vvv\nU0uhYTDx5z7o8ahvjBwOqF5sDDVX02umFBoG16zd3hpOJrGSh+ESpJhWw5dV6m5J\n530zPFObyt2kI9+E75+G/w==\n-----END PRIVATE KEY-----\n",
"client_email": "dev-deid-600@aou-res-deid-vumc-test.iam.gserviceaccount.com",
"client_id": "104228831510203920964",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/dev-deid-600%40aou-res-deid-vumc-test.iam.gserviceaccount.com"
}