documentation
This commit is contained in:
parent
685c567661
commit
df47ed4cb2
36
README.md
36
README.md
|
@ -12,32 +12,33 @@ This package is designed to generate synthetic data from a dataset from an origi
|
|||
## Usage
|
||||
|
||||
After installing the easiest way to get started is as follows (using pandas). The process is as follows:
|
||||
1. Train the GAN on the original/raw dataset
|
||||
|
||||
**Train the GAN on the original/raw dataset**
|
||||
|
||||
|
||||
import pandas as pd
|
||||
import data.maker
|
||||
import pandas as pd
|
||||
import data.maker
|
||||
|
||||
df = pd.read_csv('sample.csv')
|
||||
column = 'gender'
|
||||
id = 'id'
|
||||
context = 'demo'
|
||||
data.maker.train(context=context,data=df,column=column,id=id,logs='logs')
|
||||
df = pd.read_csv('sample.csv')
|
||||
column = 'gender'
|
||||
id = 'id'
|
||||
context = 'demo'
|
||||
data.maker.train(context=context,data=df,column=column,id=id,logs='logs')
|
||||
|
||||
The trainer will store the data on disk (for now) in a structured folder that will hold training models that will be used to generate the synthetic data.
|
||||
|
||||
|
||||
2. Generate a candidate dataset from the learnt features
|
||||
**Generate a candidate dataset from the learned features**
|
||||
|
||||
|
||||
import pandas as pd
|
||||
import data.maker
|
||||
import pandas as pd
|
||||
import data.maker
|
||||
|
||||
df = pd.read_csv('sample.csv')
|
||||
id = 'id'
|
||||
column = 'gender'
|
||||
context = 'demo'
|
||||
data.maker.generate(data=df,id=id,column=column,logs='logs')
|
||||
df = pd.read_csv('sample.csv')
|
||||
id = 'id'
|
||||
column = 'gender'
|
||||
context = 'demo'
|
||||
data.maker.generate(data=df,id=id,column=column,logs='logs')
|
||||
|
||||
## Limitations
|
||||
|
||||
|
@ -46,11 +47,14 @@ GANS will generate data assuming the original data has all the value space neede
|
|||
- No new data will be created
|
||||
|
||||
Assuming we have a dataset with an gender attribute with values [M,F].
|
||||
|
||||
The synthetic data will not be able to generate genders outside [M,F]
|
||||
|
||||
- Not advised on continuous values
|
||||
|
||||
GANS work well on discrete values and thus are not advised to be used.
|
||||
e.g:measurements (height, blood pressure, ...)
|
||||
- For now will only perform on a single feature.
|
||||
|
||||
## Credits :
|
||||
|
||||
|
|
Loading…
Reference in New Issue