bug fixes: enhancements

This commit is contained in:
Steve Nyemba 2022-03-24 11:38:52 -05:00
parent cad54d7b45
commit ee0165de01
5 changed files with 543 additions and 282 deletions

377
binder.py Normal file
View File

@ -0,0 +1,377 @@
#!/usr/bin/env python3
"""
This file will perform basic tasks to finalize the GAN process by performing the following :
- basic stats & analytics
- rebuild io to another dataset
"""
import pandas as pd
import numpy as np
from multiprocessing import Process, Lock
from google.oauth2 import service_account
from google.cloud import bigquery as bq
import transport
from data.params import SYS_ARGS
import json
import pandas as pd
import numpy as np
from google.oauth2 import service_account
import json
# path = '../curation-prod.json'
# credentials = service_account.Credentials.from_service_account_file(path)
# df = pd.read_gbq("SELECT * FROM io.icd10_partial_io",credentials=credentials,dialect='standard')
filename = 'config.json' if 'config' not in SYS_ARGS else SYS_ARGS['config']
f = open(filename)
config = json.loads(f.read())
args = config['pipeline']
f.close()
def _formatSQL(**_args):
"""
This function will build the _map for a given segment
"""
sql = """
select DISTINCT x.person_id synthetic,y.person_id original
FROM :synthetic.:table x
INNER JOIN :original.:table y on x.person_id in (:ids)
AND x.person_id <> y.person_id AND x.gender_source_value = y.gender_source_value
AND x.year_of_birth = y.year_of_birth
ORDER BY 1
"""
table= _args['table']
original,synthetic = _args['schema']['original'],_args['schema']['synthetic']
_ids = np.array(_args['ids']).astype(str)
return sql.replace(":ids",",".join(_ids)).replace(":synthetic",synthetic).replace(":original",original).replace(":table",table)
def _addCounts(**_args) :
store = _args['store']
sql = _args['sql']
reader = transport.factory.instance(**store['source'])
_df = reader.read(sql=sql)
_ids = _df.synthetic.unique()
_counts = [ np.sum(_df.synthetic == value) for value in _ids]
original = [_df[_df.synthetic == value].iloc[np.random.choice(np.arange(_counts[_ids.tolist().index(value)]),1),:].original.values[0] for value in _ids]
_df = pd.DataFrame({"synthetic":_ids,"original":original,"counts":_counts})
#
# We can post this to the backend ...
#
table = '_map' #-- Yes this is hard-coded
writer = transport.factory.instance(**dict(store['target'],**{"parallel":True,"table":table}))
# if writer.has(table=table) is False:
# writer.write(_df)
# else:
_schema = [{"name":name,"type":"INTEGER"} for name in _df.columns]
writer.write(_df,schema=_schema)
def Init(**_args) :
"""
This function will build a map of the synthetic to real individuals.
The assumption is that the synthesized data is stored in the same data-store as the original the parameters provided are :
:param store object from the configuration file with source,target entries
:param table name of the original/synthetic tables (they should be the same)
:param feat. featuress/attributes ... demographics to account for
"""
store = _args['store']
reader = transport.factory.instance(**store['source'])
original,synthetic = _args['schema']['original'],_args['schema']['synthetic']
table = _args['table']
sql = _args['sql'].replace(':synthetic',synthetic).replace(':original',original).replace(':table',table)
_map = reader.read(sql=sql)
k = _args['k'] if 'k' in _args else 2
# _iodf = reader.read(table=table)
# _ids = _iodf['person_id'].unique().tolist()
# x_ = np.array_split(_ids,1000)
jobs = []
# for _items in x_ :
# _p = {"ids":_items,"schema":_args['schema'],'store':store,'table':table}
# sql = _formatSQL(**_p)
# _p['sql'] = sql
# _apply = lambda params: _addCounts(**params)
# thread = Process(target=_apply,args=(_p,))
# thread.start()
# jobs.append(thread)
# return jobs
#
# We have performed a m:m (many-to-many) relationship with original participants and synthetic participants
# The goal is to obtain a singular map against which records will be migrated
#
print (['... computing counts (k)'])
_ids = _map.synthetic.unique()
_counts = [ np.sum(_map.synthetic == value) for value in _ids]
original = [_map[_map.synthetic == value].iloc[np.random.choice(np.arange(_counts[_ids.tolist().index(value)]),1),:].original.values[0] for value in _ids]
print (['Building k-classes/groups'])
_mdf = pd.DataFrame({"synthetic":_ids,"original":original,"counts":_counts})
i = _mdf.apply(lambda row: row.counts >= k,axis=1)
_mdf = _mdf[i]
#
# Log what just happened here so we know about the equivalence classes,
# {"module":"binder","action":"map-generation","input":{"k":k,"rows":{"synthetic":_mdf.shape[0],"original":len(_counts)}}}
return _mdf
#
# now we are posting this to target storage ...
#
def ApplyOn (**_args):
"""
This function will rewrite SQL that applies the synthetic identifier to the entries of the pipeline
We assume that the _map has two attributes (synthetic and original)
:param store
:param _config
"""
store_args = _args['store']
_config = _args['config']
table = _config['from']
reader = transport.factory.instance(**dict(store_args['source'],**{"table":table}))
attr = reader.read(limit=1).columns.tolist()
original_key = _args['original_key'] #-- assuming referential integrity
# synthetic_key= columns['synthetic']
# mapped_original=columns['orginal']
fields = list(set(attr) - set([original_key]))
sql = "select _map.synthetic as :original_key,:fields from :original_schema.:table inner join :synthetic_schema._map on _map.original = :table.:original_key"
sql = sql.replace(":table",table).replace(":fields",",".join(fields))
sql = sql.replace(":original_key",original_key)
_schema = _args['schema']
sql = sql.replace(":original_schema",_schema['original']).replace(":synthetic_schema",_schema['synthetic'])
return reader.read (sql=sql)
if __name__ == '__main__' :
pass
# class Analytics :
# """
# This class will compile basic analytics about a given dataset i.e compare original/synthetic
# """
# @staticmethod
# def distribution(**args):
# context = args['context']
# df = args['data']
# #
# #-- This data frame counts unique values for each feature (space)
# df_counts = pd.DataFrame(df.apply(lambda col: col.unique().size),columns=['counts']).T # unique counts
# #
# #-- Get the distributions for common values
# #
# names = [name for name in df_counts.columns.tolist() if name.endswith('_io') == False]
# ddf = df.apply(lambda col: pd.DataFrame(col.values,columns=[col.name]).groupby([col.name]).size() ).fillna(0)
# ddf[context] = ddf.index
# pass
# def distance(**args):
# """
# This function will measure the distance between
# """
# pass
# class Utils :
# @staticmethod
# def log(**args):
# logger = transport.factory.instance(type="mongo.MongoWriter",args={"dbname":"aou","doc":"logs"})
# logger.write(args)
# logger.close()
# class get :
# @staticmethod
# def pipeline(table,path) :
# # contexts = args['contexts'].split(',') if type(args['contexts']) == str else args['contexts']
# config = json.loads((open(path)).read())
# pipeline = config['pipeline']
# # return [ item for item in pipeline if item['context'] in contexts]
# pipeline = [item for item in pipeline if 'from' in item and item['from'].strip() == table]
# Utils.log(module=table,action='init',input={"pipeline":pipeline})
# return pipeline
# @staticmethod
# def sql(**args) :
# """
# This function is intended to build SQL query for the remainder of the table that was not synthesized
# :config configuration entries
# :from source of the table name
# :dataset name of the source dataset
# """
# SQL = ["SELECT * FROM :from "]
# SQL_FILTER = []
# NO_FILTERS_FOUND = True
# # pipeline = Utils.get.config(**args)
# pipeline = args['pipeline']
# REVERSE_QUALIFIER = {'IN':'NOT IN','NOT IN':'IN','=':'<>','<>':'='}
# for item in pipeline :
# if 'filter' in item :
# if NO_FILTERS_FOUND :
# NO_FILTERS_FOUND = False
# SQL += ['WHERE']
# #
# # Let us load the filter in the SQL Query
# FILTER = item['filter']
# QUALIFIER = REVERSE_QUALIFIER[FILTER['qualifier'].upper()]
# SQL_FILTER += [" ".join([FILTER['field'], QUALIFIER,'(',FILTER['value'],')']).replace(":dataset",args['dataset'])]
# src = ".".join([args['dataset'],args['from']])
# SQL += [" AND ".join(SQL_FILTER)]
# #
# # let's pull the field schemas out of the table definition
# #
# Utils.log(module=args['from'],action='sql',input={"sql":" ".join(SQL) })
# return " ".join(SQL).replace(":from",src)
# def mk(**args) :
# dataset = args['dataset']
# client = args['client'] if 'client' in args else bq.Client.from_service_account_file(args['private_key'])
# #
# # let us see if we have a dataset handy here
# #
# datasets = list(client.list_datasets())
# found = [item for item in datasets if item.dataset_id == dataset]
# if not found :
# return client.create_dataset(dataset)
# return found[0]
# def move (args):
# """
# This function will move a table from the synthetic dataset into a designated location
# This is the simplest case for finalizing a synthetic data set
# :private_key
# """
# pipeline = Utils.get.pipeline(args['from'],args['config'])
# _args = json.loads((open(args['config'])).read())
# _args['pipeline'] = pipeline
# # del _args['pipeline']
# args = dict(args,**_args)
# # del args['pipeline']
# # private_key = args['private_key']
# client = bq.Client.from_service_account_json(args['private_key'])
# dataset = args['dataset']
# if pipeline :
# SQL = [ ''.join(["SELECT * FROM io.",item['context'],'_full_io']) for item in pipeline]
# SQL += [Utils.get.sql(**args)]
# SQL = ('\n UNION ALL \n'.join(SQL).replace(':dataset','io'))
# else:
# #
# # moving a table to a designated location
# tablename = args['from']
# if 'sql' not in args :
# SQL = "SELECT * FROM :dataset.:table"
# else:
# SQL = args['sql']
# SQL = SQL.replace(":dataset",dataset).replace(":table",tablename)
# Utils.log(module=args['from'],action='sql',input={'sql':SQL})
# #
# # At this point we have gathered all the tables in the io folder and we should now see if we need to merge with the remainder from the original table
# #
# odataset = mk(dataset=dataset+'_io',client=client)
# # SQL = "SELECT * FROM io.:context_full_io".replace(':context',context)
# config = bq.QueryJobConfig()
# config.destination = client.dataset(odataset.dataset_id).table(args['from'])
# config.use_query_cache = True
# config.allow_large_results = True
# config.priority = 'INTERACTIVE'
# #
# #
# schema = client.get_table(client.dataset(args['dataset']).table(args['from'])).schema
# fields = [" ".join(["CAST (",item.name,"AS",item.field_type.replace("INTEGER","INT64").replace("FLOAT","FLOAT64"),") ",item.name]) for item in schema]
# SQL = SQL.replace("*"," , ".join(fields))
# # print (SQL)
# out = client.query(SQL,location='US',job_config=config)
# Utils.log(module=args['from'],action='move',input={'job':out.job_id})
# return (out.job_id)
# import pandas as pd
# import numpy as np
# from google.oauth2 import service_account
# import json
# # path = '../curation-prod.json'
# # credentials = service_account.Credentials.from_service_account_file(path)
# # df = pd.read_gbq("SELECT * FROM io.icd10_partial_io",credentials=credentials,dialect='standard')
# filename = 'config.json' if 'config' not in SYS_ARGS else SYS_ARGS['config']
# f = open(filename)
# config = json.loads(f.read())
# args = config['pipeline']
# f.close()
# if __name__ == '__main__' :
# """
# Usage :
# finalize --<move|stats> --contexts <c1,c2,...c3> --from <table>
# """
# if 'move' in SYS_ARGS :
# if 'init' in SYS_ARGS :
# dep = config['dep'] if 'dep' in config else {}
# info = []
# if 'queries' in dep :
# info += dep['queries']
# print ('________')
# if 'tables' in dep :
# info += dep['tables']
# args = {}
# jobs = []
# for item in info :
# args = {}
# if type(item) == str :
# args['from'] = item
# name = item
# else:
# args = item
# name = item['from']
# args['config'] = SYS_ARGS['config']
# # args['pipeline'] = []
# job = Process(target=move,args=(args,))
# job.name = name
# jobs.append(job)
# job.start()
# # while len(jobs) > 0 :
# # jobs = [job for job in jobs if job.is_alive()]
# # time.sleep(1)
# else:
# move(SYS_ARGS)
# # # table = SYS_ARGS['from']
# # # args = dict(config,**{"private_key":"../curation-prod.json"})
# # args = dict(args,**SYS_ARGS)
# # contexts = [item['context'] for item in config['pipeline'] if item['from'] == SYS_ARGS['from']]
# # log = []
# # if contexts :
# # args['contexts'] = contexts
# # log = move(**args)
# # else:
# # tables = args['from'].split(',')
# # for name in tables :
# # name = name.strip()
# # args['from'] = name
# # log += [move(**args)]
# # print ("\n".join(log))
# else:
# print ("NOT YET READY !")

View File

@ -622,7 +622,7 @@ class Predict(GNet):
candidates.append(np.array([np.round(row).astype(int) for row in _matrix]))
# return candidates[0] if len(candidates) == 1 else candidates
return candidates
return [candidates [0]]
def _apply(self,**args):
# print (self.train_dir)
@ -768,55 +768,3 @@ class Predict(GNet):
# return df.to_dict(orient='list')
return _matrix
if __name__ == '__main__' :
#
# Now we get things done ...
column = SYS_ARGS['column']
column_id = SYS_ARGS['id'] if 'id' in SYS_ARGS else 'person_id'
column_id = column_id.split(',') if ',' in column_id else column_id
df = pd.read_csv(SYS_ARGS['raw-data'])
LABEL = pd.get_dummies(df[column_id]).astype(np.float32).values
context = SYS_ARGS['raw-data'].split(os.sep)[-1:][0][:-4]
if set(['train','learn']) & set(SYS_ARGS.keys()):
df = pd.read_csv(SYS_ARGS['raw-data'])
# cols = SYS_ARGS['column']
# _map,_df = (Binary()).Export(df)
# i = np.arange(_map[column]['start'],_map[column]['end'])
max_epochs = np.int32(SYS_ARGS['max_epochs']) if 'max_epochs' in SYS_ARGS else 10
# REAL = _df[:,i]
REAL = pd.get_dummies(df[column]).astype(np.float32).values
LABEL = pd.get_dummies(df[column_id]).astype(np.float32).values
trainer = Train(context=context,max_epochs=max_epochs,real=REAL,label=LABEL,column=column,column_id=column_id)
trainer.apply()
#
# We should train upon this data
#
# -- we need to convert the data-frame to binary matrix, given a column
#
pass
elif 'generate' in SYS_ARGS:
values = df[column].unique().tolist()
values.sort()
p = Predict(context=context,label=LABEL,values=values,column=column)
p.load_meta(column)
r = p.apply()
# print (df)
# print ()
df[column] = r[column]
# print (df)
else:
print (SYS_ARGS.keys())
print (__doc__)
pass

View File

@ -96,7 +96,11 @@ def train (**_args):
# This
args['store'] = copy.deepcopy(_args['store']['logs'])
args['store']['args']['doc'] = _args['context']
if 'args' in _args['store']:
args['store']['args']['doc'] = _args['context']
else:
args['store']['doc'] = _args['context']
logger = factory.instance(**args['store'])
args['logger'] = logger

View File

@ -39,26 +39,10 @@ class Input :
- provide a feature space, and rows (matrix profile)
- a data index map
"""
# def learn(self,**_args):
# """
# This function is designed to learn about, the data and persist
# :param table
# :param store
# """
# table = _args['table']
# reader = transport.factory.instance(**_args['store'])
# df = reader.read(table=table,limit=1)
# self.columns = df.columns.tolist()
# self._metadf = pd.DataFrame(self.df[self._columns].dtypes.values.astype(str)).T #,self._columns]
# self._metadf.columns = self._columns
# sql = "SELECT :fields from :table".replace(":table",table)
def __init__(self,**_args):
"""
:param table
:param data
:param store data-store parameters/configuration
:param sql sql query that pulls a representative sample of the data
"""
@ -70,29 +54,18 @@ class Input :
pass
else:
self._initsql(**_args)
#
# We need to have a means to map of values,columns and vector positions in order
# to perform convert and revert to and from binary
#
self._map = {} if 'map' not in _args else _args['map']
# self._metadf = pd.DataFrame(self.df[self._columns].dtypes.values.astype(str)).T #,self._columns]
# self._metadf.columns = self._columns
# if 'gpu' in _args and 'GPU' in os.environ:
# np = cp
# index = int(_args['gpu'])
# np.cuda.Device(index).use()
# print(['..:: GPU ',index])
def _initsql(self,**_args):
"""
This function will initialize the class on the basis of a data-store and optionally pre-defined columns to be used to be synthesized
:param store data-store configuration
:param sql sql query to be applied to the transported data
:param columns list of columns to be
"""
# _store_args = _args['store']
# reader = transport.factory.instance(**_store_args)
# sql = _args['sql']
# self.df = reader.read(sql=_args['sql'])
if 'columns' not in _args :
self._initcols(data=self.df)
@ -128,14 +101,6 @@ class Input :
:param data data-frame that holds the data
:param columns columns that need to be synthesized if any
"""
#
# setting class-level variables to be reused across the class
# self.df = _args['data']
row_count = self.df.shape[0]
# self.columns = self.df.columns
# self._metadf = self.df.apply(lambda col: col.unique().size)
# _df = pd.DataFrame(self.df.apply(lambda col: col.unique().size )).T
# cols = None if 'columns' not in _args else _args['columns']
self._initcols(**_args)
def convert(self,**_args):
@ -247,16 +212,3 @@ class Input :
return cols,_matrix
if __name__ == '__main__' :
df = pd.read_csv('../../sample.csv')
_input = Input(data=df,columns=['age','race'])
_m = _input.convert(column='age')
print (_m.shape)
print (_input.revert(matrix=_m,column='age'))
print (_input._metadf)
# _args = {"store":{"type":"sql.BQReader","args":{"service_key":"/home/steve/dev/aou/accounts/curation-prod.json"}}}
# _args['table'] = 'io.observation'
# _i = Input(**_args)
# df = pd.read_csv('../../sample.csv')
# print (Input.ToBinary(df.age))

View File

@ -101,11 +101,14 @@ class Components :
df = pd.read_csv(args['file'])
del args['file']
elif 'data' not in args :
reader = factory.instance(**args['store']['source'])
if 'row_limit' in args :
df = reader.read(sql=args['sql'],limit=args['row_limit'])
else:
df = reader.read(sql=args['sql'])
df = reader.read(sql=args['sql'])
schema = reader.meta(table=args['from']) if hasattr(reader,'meta') and 'from' in args else None
else:
df = args['data']
@ -241,6 +244,7 @@ class Components :
df.index = np.arange(df.shape[0])
self.post(data=df,schema=schema,store=args['store']['target'])
def post(self,**_args) :
table = _args['from'] if 'from' in _args else _args['store']['table']
_schema = _args['schema'] if 'schema' in _args else None
writer = factory.instance(**_args['store'])
_df = _args['data']
@ -251,13 +255,13 @@ class Components :
_type = str
_value = 0
if _item['type'] in ['DATE','TIMESTAMP','DATETIMESTAMP','DATETIME'] :
if _item['type'] == 'DATE' :
if _item['type'] in ['DATE','TIMESTAMP','DATETIME'] :
#
# There is an issue with missing dates that needs to be resolved.
# for some reason a missing date/time here will cause the types to turn into timestamp (problem)
# The following is a hack to address the issue (alas) assuming 10 digit dates and 'NaT' replaces missing date values (pandas specifications)
#
_df[name] = _df[name].apply(lambda value: '' if str(value) == 'NaT' else str(value)[:10])
_df[name] = _df[name].apply(lambda value: None if str(value) == 'NaT' else (str(value)[:10]) if _item['type'] in ['DATE','DATETIME'] else str(value))
#_df[name] = _df[name].dt.date
# _df[name] = pd.to_datetime(_df[name].fillna(''),errors='coerce')
else:
@ -274,11 +278,33 @@ class Components :
_value = ''
_df[name] = _df[name].fillna(_value) #.astype(_type)
columns.append(name)
print ()
print (_df)
writer.write(_df.astype(object),schema=_schema,table=args['from'])
fields = _df.columns.tolist()
if not writer.has(table=table) and _args['store']['provider'] != 'bigquery':
_map = {'STRING':'VARCHAR(256)','INTEGER':'BIGINT'} if 'provider' in _args['store'] and _args['store']['provider'] != 'bigquery' else {}
_params = {'map':_map,'table':args['from']}
if _schema :
_params['schema'] = _schema
else:
_params['fields'] = fields
writer.make(**_params)
fields = _df.columns.tolist()
_df = _df[fields]
# writer.fields = fields
if _args['store']['provider'] == 'bigquery' :
print (['_______ POSTING ______________ ',table])
print (['_______________ ',_df.shape[0],' ___________________'])
writer.write(_df.astype(object),schema=_schema,table=table)
else:
writer.write(_df,table=args['from'])
writer.table = table
writer.write(_df)
# else:
# writer.write(_df,table=args['from'])
def finalize(self,args):
"""
@ -288,8 +314,9 @@ class Components :
"""
reader = factory.instance(**args['store']['source'])
logger = factory.instance(**args['store']['logs'])
target = args['store']['target']['args']['dataset']
source = args['store']['source']['args']['dataset']
target = args['store']['target']['args']['dataset']
source = args['store']['source']['args']['dataset']
table = args['from']
schema = reader.meta(table=args['from'])
#
@ -327,7 +354,10 @@ class Components :
This function will generate data and store it to a given,
"""
store = args['store']['logs']
store['args']['doc'] = args['context']
if 'args' in store :
store['args']['doc'] = args['context']
else:
store['doc'] = args['context']
logger = factory.instance(**store) #type='mongo.MongoWriter',args={'dbname':'aou','doc':args['context']})
ostore = args['store']['target']
@ -348,13 +378,13 @@ class Components :
schema = reader.meta(table=args['from'])
schema = [{"name":_item.name,"type":_item.field_type} for _item in schema]
# else:
# #
# # This will account for autopilot mode ...
# df = args['data']
_cast = {}
if schema :
for _item in schema :
dtype = str
name = _item['name']
@ -405,139 +435,72 @@ class Components :
logger.write(_info)
if args['data'].shape[0] > 0 and args['data'].shape[1] > 0 :
candidates = (data.maker.generate(**args))
else:
candidates = [df]
if 'sql.BQWriter' in ostore['type'] :
#table = ".".join([ostore['['dataset'],args['context']])
# writer = factory.instance(**ostore)
_columns = None
skip_columns = []
_schema = schema
if schema :
cols = [_item['name'] for _item in _schema]
else:
cols = df.columns
for _df in candidates :
#
# we need to format the fields here to make sure we have something cohesive
#
# if 'sql.BQWriter' in ostore['type'] :
_columns = None
skip_columns = []
_schema = schema
if schema :
cols = [_item['name'] for _item in _schema]
else:
cols = df.columns.tolist()
_info = {"module":"gan-prep","action":"selection","input":{"candidates":len(candidates),"features":cols}}
logger.write(_info)
for _df in candidates :
#
# we need to format the fields here to make sure we have something cohesive
#
if not skip_columns :
# _columns = set(df.columns) - set(_df.columns)
if 'ignore' in args and 'columns' in args['ignore'] :
skip_columns = self.get_ignore(data=_df,columns=args['ignore']['columns'])
# for name in args['ignore']['columns'] :
# for _name in _df.columns:
# if _name in name:
# skip_columns.append(_name)
#
# We perform a series of set operations to insure that the following conditions are met:
# - the synthetic dataset only has fields that need to be synthesized
# - The original dataset has all the fields except those that need to be synthesized
#
_df = _df[list(set(_df.columns) - set(skip_columns))].copy()
if x_cols :
_approx = {}
for _col in x_cols :
if real_df[_col].unique().size > 0 :
if not skip_columns :
if 'ignore' in args and 'columns' in args['ignore'] :
skip_columns = self.get_ignore(data=_df,columns=args['ignore']['columns'])
#
# We perform a series of set operations to insure that the following conditions are met:
# - the synthetic dataset only has fields that need to be synthesized
# - The original dataset has all the fields except those that need to be synthesized
#
_df = _df[list(set(_df.columns) - set(skip_columns))].copy()
if x_cols :
_approx = {}
for _col in x_cols :
if real_df[_col].unique().size > 0 :
_df[_col] = self.approximate(real_df[_col].values)
_approx[_col] = {
"io":{"min":_df[_col].min().astype(float),"max":_df[_col].max().astype(float),"mean":_df[_col].mean().astype(float),"sd":_df[_col].values.std().astype(float),"missing": _df[_col].where(_df[_col] == -1).dropna().count().astype(float),"zeros":_df[_col].where(_df[_col] == 0).dropna().count().astype(float)},
"real":{"min":real_df[_col].min().astype(float),"max":real_df[_col].max().astype(float),"mean":real_df[_col].mean().astype(float),"sd":real_df[_col].values.std().astype(float),"missing": real_df[_col].where(_df[_col] == -1).dropna().count().astype(float),"zeros":real_df[_col].where(_df[_col] == 0).dropna().count().astype(float)}
}
else:
_df[_col] = -1
logger.write({"module":"gan-generate","action":"approximate","status":_approx})
if set(df.columns) & set(_df.columns) :
_columns = set(df.columns) - set(_df.columns)
df = df[_columns]
_df[_col] = self.approximate(real_df[_col].values)
_approx[_col] = {
"io":{"min":_df[_col].min().astype(float),"max":_df[_col].max().astype(float),"mean":_df[_col].mean().astype(float),"sd":_df[_col].values.std().astype(float),"missing": _df[_col].where(_df[_col] == -1).dropna().count().astype(float),"zeros":_df[_col].where(_df[_col] == 0).dropna().count().astype(float)},
"real":{"min":real_df[_col].min().astype(float),"max":real_df[_col].max().astype(float),"mean":real_df[_col].mean().astype(float),"sd":real_df[_col].values.std().astype(float),"missing": real_df[_col].where(_df[_col] == -1).dropna().count().astype(float),"zeros":real_df[_col].where(_df[_col] == 0).dropna().count().astype(float)}
}
else:
_df[_col] = -1
logger.write({"module":"gan-generate","action":"approximate","status":_approx})
if set(df.columns) & set(_df.columns) :
_columns = list(set(df.columns) - set(_df.columns))
df = df[_columns]
#
# Let us merge the dataset here and and have a comprehensive dataset
#
# Let us merge the dataset here and and have a comprehensive dataset
_df = pd.DataFrame.join(df,_df)
# if _schema :
# for _item in _schema :
# if _item['type'] in ['DATE','TIMESTAMP','DATETIME'] :
# _df[_item['name']] = _df[_item['name']].astype(str)
# pass
_params = {'data':_df,'store' : ostore}
if _schema :
_params ['schema'] = _schema
self.post(**_params)
# if _schema :
# writer.write(_df[cols],schema=_schema,table=args['from'])
# self.post(data=_df,schema=)
# else:
# writer.write(_df[cols],table=args['from'])
_df = pd.DataFrame.join(df,_df)
_params = {'data':_df,'store' : ostore}
if _schema :
_params ['schema'] = _schema
_info = {"module":"gan-prep","action":"write","input":{"rows":_df.shape[0],"cols":_df.shape[1]}}
logger.write(_info)
self.post(**_params)
# print (['_______ posting _________________',_df.shape])
break
pass
# else:
# pass
# #
# # We need to post the generate the data in order to :
# # 1. compare immediately
# # 2. synthetic copy
# #
# cols = _dc.columns.tolist()
# data_comp = _args['data'][args['columns']].join(_dc[args['columns']],rsuffix='_io') #-- will be used for comparison (store this in big query)
# #
# # performing basic analytics on the synthetic data generated (easy to quickly asses)
# #
# info = {"module":"generate","action":"io.metrics","input":{"rows":data_comp.shape[0],"partition":partition,"logs":[]}}
# #
# # @TODO: Send data over to a process for analytics
# base_cols = list(set(_args['data'].columns) - set(args['columns'])) #-- rebuilt the dataset (and store it)
# cols = _dc.columns.tolist()
# for name in cols :
# _args['data'][name] = _dc[name]
# #
# #-- Let us store all of this into bigquery
# prefix = args['notify']+'.'+_args['context']
# partition = str(partition)
# table = '_'.join([prefix,partition,'io']).replace('__','_')
# folder = os.sep.join([args['logs'],args['context'],partition,'output'])
# if 'file' in args :
# _fname = os.sep.join([folder,table.replace('_io','_full_io.csv')])
# _pname = os.sep.join([folder,table])+'.csv'
# data_comp.to_csv( _pname,index=False)
# _args['data'].to_csv(_fname,index=False)
# _id = 'path'
# else:
# credentials = service_account.Credentials.from_service_account_file('/home/steve/dev/aou/accounts/curation-prod.json')
# _pname = os.sep.join([folder,table+'.csv'])
# _fname = table.replace('_io','_full_io')
# partial = '.'.join(['io',args['context']+'_partial_io'])
# complete= '.'.join(['io',args['context']+'_full_io'])
# data_comp.to_csv(_pname,index=False)
# if 'dump' in args :
# print (_args['data'].head())
# else:
# Components.lock.acquire()
# data_comp.to_gbq(if_exists='append',destination_table=partial,credentials=credentials,chunksize=90000)
# _args['data'].to_gbq(if_exists='append',destination_table=complete,credentials=credentials,chunksize=90000)
# Components.lock.release()
# _id = 'dataset'
# info = {"full":{_id:_fname,"rows":_args['data'].shape[0]},"partial":{"path":_pname,"rows":data_comp.shape[0]} }
# if partition :
# info ['partition'] = int(partition)
# logger.write({"module":"generate","action":"write","input":info} )
def bind(self,**_args):
print (_args)
if __name__ == '__main__' :
@ -611,6 +574,50 @@ if __name__ == '__main__' :
generator = Components()
generator.generate(args)
elif 'bind' in SYS_ARGS :
import binder
_args = _config['_map']
_args['store'] = copy.deepcopy(_config['store'])
if 'init' in SYS_ARGS :
#
# Creating and persisting the map ...
print (['.... Binding Initialization'])
# jobs = binder.Init(**_args)
_mapped = binder.Init(**_args)
_schema = [{"name":_name,"type":"INTEGER"} for _name in _mapped.columns.tolist()]
publisher = lambda _params: (Components()).post(**_params)
_args = {'data':_mapped,'store':_config['store']['target']}
_args['store']['table'] = '_map'
if _args['store']['provider'] =='bigquery' :
_args['schema'] = _schema
job = Process (target = publisher,args=(_args,))
job.start()
jobs = [job]
else:
#
# Applying the map of k on a particular dataset
#
index = int(SYS_ARGS['index'])
_args['config'] = _config['pipeline'][index]
_args['original_key'] = 'person_id' if 'original_key' in _config else 'person_id'
table = _config['pipeline'][index]['from']
_df = binder.ApplyOn(**_args)
_df = np.array_split(_df,PART_SIZE)
jobs = []
print (['Publishing ',PART_SIZE,' PARTITION'])
for data in _df :
publisher = lambda _params: ( Components() ).post(**_params)
_args = {'data':data,'store':_config['store']['target']}
_args['store']['table'] = table
print (_args['store'])
job = Process(target = publisher,args=(_args,))
job.name = "Publisher "+str(len(jobs)+1)
job.start()
jobs.append(job)
elif 'shuffle' in SYS_ARGS :
index = 0
if GPU_CHIPS and 'all-chips' in SYS_ARGS:
@ -632,6 +639,7 @@ if __name__ == '__main__' :
# Let us create n-jobs across n-gpus, The assumption here is the data that is produced will be a partition
# @TODO: Find better name for partition
#
if GPU_CHIPS and 'all-chips' in SYS_ARGS:
index = 0
print (['... launching ',len(GPU_CHIPS),' jobs',args['context']])
@ -652,12 +660,15 @@ if __name__ == '__main__' :
else:
#
# The choice of the chip will be made internally
agent = Components()
agent.train(**args)
#
# If we have any obs we should wait till they finish
#
DIRTY = 0
if (len(jobs)) :
print (['.... waiting on ',len(jobs),' jobs'])
while len(jobs)> 0 :
DIRTY =1
jobs = [job for job in jobs if job.is_alive()]
@ -666,47 +677,16 @@ if __name__ == '__main__' :
print (["..:: jobs finished "])
#
# We need to harmonize the keys if any at all in this case we do this for shuffle or generate operations
#
if 'autopilot' in SYS_ARGS or 'finalize' in SYS_ARGS or ('generate' in SYS_ARGS or 'shuffle' in SYS_ARGS) :
#
# We should pull all the primary keys and regenerate them in order to insure some form of consistency
#
print (["..:: Finalizing process"])
(Components()).finalize(args)
# finalize(args)
pass
# jobs = []
# for index in range(0,PART_SIZE) :
# if 'focus' in args and int(args['focus']) != index :
# continue
# args['part_size'] = PART_SIZE
# args['partition'] = index
# args['data'] = DATA[index]
# if int(args['num_gpu']) > 1 :
# args['gpu'] = index
# else:
# args['gpu']=0
# This holds true for bigquery - bigquery only
IS_BIGQUERY = _config['store']['source']['provider'] == _config['store']['target']['provider'] and _config['store']['source']['provider'] == 'bigquery'
# make = lambda _args: (Components()).train(**_args)
# job = Process(target=make,args=( dict(args),))
# job.name = 'Trainer # ' + str(index)
# job.start()
# jobs.append(job)
# # args['gpu']
# print (["Started ",len(jobs),"trainers" if len(jobs)>1 else "trainer" ])
# while len(jobs)> 0 :
# jobs = [job for job in jobs if job.is_alive()]
# time.sleep(2)
# if 'bind' not in SYS_ARGS and IS_BIGQUERY and ('autopilot' in SYS_ARGS or 'finalize' in SYS_ARGS or ('generate' in SYS_ARGS or 'shuffle' in SYS_ARGS)) :
# #
# # We should pull all the primary keys and regenerate them in order to insure some form of consistency
# #
# trainer = Components()
# trainer.train(**args)
# #
# #
# Components.train(**args)
#for args in PIPELINE :
#args['dataset'] = 'combined20190510'
#process = Process(target=Components.train,args=(args,))
#process.name = args['context']
#process.start()
# Components.train(args)
# print (["..:: Finalizing process"])
# (Components()).finalize(args)