feature: bootstrap-like with candidates

This commit is contained in:
Steve Nyemba 2021-04-07 15:30:59 -05:00
parent 12d7573ba8
commit f26795387e
4 changed files with 94 additions and 19 deletions

View File

@ -67,8 +67,9 @@ class GNet :
self.NUM_GPUS = 0
else:
self.NUM_GPUS = len(self.GPU_CHIPS)
# os.environ['CUDA_VISIBLE_DEVICES'] = str(self.GPU_CHIPS[0])
self.PARTITION = args['partition']
self.PARTITION = args['partition'] if 'partition' in args else None
# if self.NUM_GPUS > 1 :
# os.environ['CUDA_VISIBLE_DEVICES'] = "4"
@ -117,9 +118,14 @@ class GNet :
for key in ['train','output'] :
self.mkdir(os.sep.join([self.log_dir,key]))
self.mkdir (os.sep.join([self.log_dir,key,self.CONTEXT]))
if 'partition' in args :
self.mkdir (os.sep.join([self.log_dir,key,self.CONTEXT,str(args['partition'])]))
self.train_dir = os.sep.join([self.log_dir,'train',self.CONTEXT])
self.out_dir = os.sep.join([self.log_dir,'output',self.CONTEXT])
if 'partition' in args :
self.train_dir = os.sep.join([self.train_dir,str(args['partition'])])
self.out_dir = os.sep.join([self.out_dir,str(args['partition'])])
# if self.logger :
# We will clear the logs from the data-store
@ -130,7 +136,7 @@ class GNet :
# db.backup.insert({'name':column,'logs':list(db[column].find()) })
# db[column].drop()
def load_meta(self,column):
def load_meta(self,**args):
"""
This function is designed to accomodate the uses of the sub-classes outside of a strict dependency model.
Because prediction and training can happen independently
@ -145,6 +151,9 @@ class GNet :
setattr(self,key,value)
self.train_dir = os.sep.join([self.log_dir,'train',self.CONTEXT])
self.out_dir = os.sep.join([self.log_dir,'output',self.CONTEXT])
if 'partition' in args :
self.train_dir = os.sep.join([self.train_dir,str(args['partition'])])
self.out_dir = os.sep.join([self.out_dir,str(args['partition'])])
def log_meta(self,**args) :
@ -265,9 +274,9 @@ class Generator (GNet):
#tf.add_to_collection('glosses', loss)
tf.compat.v1.add_to_collection('glosses', loss)
return loss, loss
def load_meta(self, column):
super().load_meta(column)
self.discriminator.load_meta(column)
def load_meta(self, **args):
super().load_meta(**args)
self.discriminator.load_meta(**args)
def network(self,**args) :
"""
This function will build the network that will generate the synthetic candidates
@ -454,6 +463,7 @@ class Train (GNet):
# - determine if the GPU/CPU are busy
#
for i in self.GPU_CHIPS : #range(self.NUM_GPUS):
with tf.device('/gpu:%d' % i):
with tf.name_scope('%s_%d' % ('TOWER', i)) as scope:
if self._LABEL is not None :
@ -559,9 +569,9 @@ class Predict(GNet):
# self.MISSING_VALUES = args['no_value']
# self.MISSING_VALUES = int(args['no_value']) if args['no_value'].isnumeric() else np.na if args['no_value'] in ['na','NA','N/A'] else args['no_value']
def load_meta(self, column):
super().load_meta(column)
self.generator.load_meta(column)
def load_meta(self, **args):
super().load_meta(**args)
self.generator.load_meta(**args)
self.ROW_COUNT = self.oROW_COUNT
def apply(self,**args):
suffix = self.CONTEXT #self.get.suffix()

View File

@ -112,7 +112,8 @@ def train (**_args):
args ['max_epochs'] = _args['max_epochs']
args['matrix_size'] = _matrix.shape[0]
args['batch_size'] = 2000
args['partition'] = 0 if 'partition' not in _args else _args['partition']
if 'partition' in _args :
args['partition'] = _args['partition']
if 'gpu' in _args :
args['gpu'] = _args['gpu']
# os.environ['CUDA_VISIBLE_DEVICES'] = str(args['gpu']) if 'gpu' in args else '0'
@ -121,7 +122,8 @@ def train (**_args):
#
# @TODO: Write the map.json in the output directory for the logs
#
f = open(os.sep.join([_args['logs'],'output',_args['context'],'map.json']),'w')
# f = open(os.sep.join([_args['logs'],'output',_args['context'],'map.json']),'w')
f = open(os.sep.join([trainer.out_dir,'map.json']),'w')
f.write(json.dumps(_map))
f.close()
@ -140,7 +142,11 @@ def generate(**_args):
:param context
:param logs
"""
partition = _args['partition'] if 'partition' in _args else None
if not partition :
f = open(os.sep.join([_args['logs'],'output',_args['context'],'map.json']))
else:
f = open(os.sep.join([_args['logs'],'output',_args['context'],str(partition),'map.json']))
_map = json.loads(f.read())
f.close()
# if 'file' in _args :
@ -165,7 +171,7 @@ def generate(**_args):
args['gpu'] = _args['gpu']
handler = gan.Predict (**args)
handler.load_meta(None)
handler.load_meta(column=None)
#
# Let us now format the matrices by reverting them to a data-frame with values
#

View File

@ -237,7 +237,7 @@ class Input :
#
# @NOTE: For some reason, there is an out of memory error created here, this seems to fix it (go figure)
#
_matrix = np.array([np.repeat(0,cols.size) for i in range(row_count)])
_matrix = np.array([np.repeat(0,cols.size) for i in range(0,row_count)])
[np.put(_matrix[i], np.where(cols == rows[i]) ,1)for i in np.arange(row_count) if np.where(cols == rows[i])[0].size > 0]
# else:
# _matrix = cp.zeros([row_count,cols.size])

View File

@ -146,6 +146,8 @@ class Components :
_args['data'] = _args['data'][list(set(_args['data'].columns) - set(x_cols))]
if 'gpu' in args :
_args['gpu'] = self.set_gpu(gpu=args['gpu'])
if 'partition' in args :
_args['partition'] = args['partition']
if df.shape[0] and df.shape[0] :
#
# We have a full blown matrix to be processed
@ -171,6 +173,7 @@ class Components :
r = np.random.dirichlet(values+.001) #-- dirichlet doesn't work on values with zeros
_sd = values[values > 0].std()
_me = values[values > 0].mean()
_mi = values.min()
x = []
_type = values.dtype
for index in np.arange(values.size) :
@ -273,6 +276,9 @@ class Components :
args['candidates'] = 1 if 'candidates' not in args else int(args['candidates'])
if 'gpu' in args :
args['gpu'] = self.set_gpu(gpu=args['gpu'])
# if 'partition' in args :
# args['logs'] = os.sep.join([args['logs'],str(args['partition'])])
_info = {"module":"gan-prep","action":"prune","shape":{"rows":args['data'].shape[0],"columns":args['data'].shape[1]}}
logger.write(_info)
if args['data'].shape[0] > 0 and args['data'].shape[1] > 0 :
@ -459,12 +465,18 @@ if __name__ == '__main__' :
# COLUMNS = DATA.columns
# DATA = np.array_split(DATA,PART_SIZE)
# args['schema'] = schema
GPU_CHIPS = SYS_ARGS['gpu'] if 'gpu' in SYS_ARGS else None
if GPU_CHIPS and type(GPU_CHIPS) != list :
GPU_CHIPS = [int(_id.strip()) for _id in GPU_CHIPS.split(',')] if type(GPU_CHIPS) == str else [GPU_CHIPS]
if 'gpu' in SYS_ARGS :
args['gpu'] = GPU_CHIPS
jobs = []
if 'generate' in SYS_ARGS :
#
# Let us see if we have partitions given the log folder
content = os.listdir( os.sep.join([args['logs'],'train',args['context']]))
generator = Components()
# if ''.join(content).isnumeric() :
# #
@ -508,13 +520,60 @@ if __name__ == '__main__' :
# else:
# generator.generate(args)
# Components.generate(args)
if '--all-chips' in SYS_ARGS and GPU_CHIPS:
index = 0
jobs = []
for _id in GPU_CHIPS :
_args = copy.deepcopy(args)
_args['gpu'] = [int(_gpu)]
_args['partition'] = index
index += 1
make = lambda _params: (Components()).generate(_params)
job = Process(target=make,args=( dict(_args),))
job.name = 'Trainer # ' + str(index)
job.start()
jobs.append(job)
pass
else:
generator = Components()
generator.generate(args)
else:
# DATA = np.array_split(DATA,PART_SIZE)
#
# Let us create n-jobs across n-gpus, The assumption here is the data that is produced will be a partition
# @TODO: Find better name for partition
#
if GPU_CHIPS and '--all-chips' in SYS_ARGS:
index = 0
for _gpu in GPU_CHIPS :
_args = copy.deepcopy(args)
_args['gpu'] = [int(_gpu)]
_args['partition'] = index
index += 1
make = lambda _params: (Components()).train(**_params)
job = Process(target=make,args=( dict(_args),))
job.name = 'Trainer # ' + str(index)
job.start()
jobs.append(job)
else:
#
# The choice of the chip will be made internally
agent = Components()
agent.train(**args)
#
# If we have any obs we should wait till they finish
#
while len(jobs)> 0 :
jobs = [job for job in jobs if job.is_alive()]
time.sleep(2)
# jobs = []
# for index in range(0,PART_SIZE) :
# if 'focus' in args and int(args['focus']) != index :