fix: table schema (urgh)
This commit is contained in:
parent
9fff0d123e
commit
f9da0f1ce7
63
pipeline.py
63
pipeline.py
|
@ -7,6 +7,7 @@ import os
|
|||
from multiprocessing import Process, Lock
|
||||
import pandas as pd
|
||||
from google.oauth2 import service_account
|
||||
from google.cloud import bigquery as bq
|
||||
import data.maker
|
||||
|
||||
from data.params import SYS_ARGS
|
||||
|
@ -115,10 +116,44 @@ class Components :
|
|||
data.maker.train(**_args)
|
||||
|
||||
if 'autopilot' in ( list(args.keys())) :
|
||||
print (['drone mode enabled ....'])
|
||||
print (['autopilot mode enabled ....'])
|
||||
self.generate(args)
|
||||
|
||||
pass
|
||||
def shuffle(self,args):
|
||||
"""
|
||||
"""
|
||||
df = args['reader']() if 'reader' in args else args['data']
|
||||
|
||||
|
||||
col = args['columns'][0]
|
||||
distrib = df[col].value_counts()
|
||||
values = np.array(distrib.index)
|
||||
counts = np.array(distrib.values)
|
||||
np.random.shuffle(values)
|
||||
np.random.shuffle(counts)
|
||||
N = len (values)
|
||||
theta = np.random.sample()
|
||||
pad = 0
|
||||
# print (values)
|
||||
iovalues = np.zeros(df.shape[0],dtype=df[col].dtype)
|
||||
for i in range(N) :
|
||||
# n = int(counts[i] - counts[i]*theta)
|
||||
n = counts[i]
|
||||
print ([counts[i],theta,n])
|
||||
index = np.where(iovalues == 0)[0]
|
||||
if index.size > 0 and index.size > n:
|
||||
index = index[:n]
|
||||
iovalues[index] = values[i]
|
||||
|
||||
|
||||
np.random.shuffle(iovalues)
|
||||
df[col] = iovalues
|
||||
|
||||
return df
|
||||
def post(self,args):
|
||||
pass
|
||||
|
||||
|
||||
# @staticmethod
|
||||
def generate(self,args):
|
||||
|
@ -181,12 +216,12 @@ class Components :
|
|||
# let us fix the data types here every _id field will be an np.int64...
|
||||
#
|
||||
|
||||
for name in df.columns.tolist():
|
||||
# for name in df.columns.tolist():
|
||||
|
||||
if name.endswith('_id') :
|
||||
if df[name].isnull().sum() > 0 :
|
||||
df[name].fillna(np.nan_to_num(np.nan),inplace=True)
|
||||
df[name] = df[name].astype(int)
|
||||
# if name.endswith('_id') :
|
||||
# if df[name].isnull().sum() > 0 and name not in ['unique_device_id']:
|
||||
# df[name].fillna(np.nan_to_num(np.nan),inplace=True)
|
||||
# df[name] = df[name].astype(int)
|
||||
|
||||
|
||||
_dc = pd.DataFrame()
|
||||
|
@ -232,6 +267,11 @@ class Components :
|
|||
|
||||
_id = 'path'
|
||||
else:
|
||||
client = bq.Client.from_service_account_json(args["private_key"])
|
||||
full_schema = client.get_table(client.dataset(args['dataset']).table(args['from'])).schema
|
||||
full_schema = [{'name':item.name,'type':item.field_type,'description':item.description} for item in full_schema]
|
||||
io_schema = [{'name':item['name'],'type':item['type'],'description':item['description']} for item in full_schema if item['name'] in args['columns']]
|
||||
|
||||
credentials = service_account.Credentials.from_service_account_file('/home/steve/dev/aou/accounts/curation-prod.json')
|
||||
_pname = os.sep.join([folder,table+'.csv'])
|
||||
_fname = table.replace('_io','_full_io')
|
||||
|
@ -243,11 +283,11 @@ class Components :
|
|||
else:
|
||||
Components.lock.acquire()
|
||||
|
||||
data_comp.to_gbq(if_exists='append',destination_table=partial,credentials=credentials,chunksize=90000)
|
||||
data_comp.to_gbq(if_exists='append',destination_table=partial,credentials=credentials,chunksize=90000,table_schema=io_schema)
|
||||
|
||||
INSERT_FLAG = 'replace' if 'partition' not in args or 'segment' not in args else 'append'
|
||||
|
||||
_args['data'].to_gbq(if_exists='append',destination_table=complete,credentials=credentials,chunksize=90000)
|
||||
_args['data'].to_gbq(if_exists='append',destination_table=complete,credentials=credentials,chunksize=90000,table_schema=full_schema)
|
||||
Components.lock.release()
|
||||
_id = 'dataset'
|
||||
info = {"full":{_id:_fname,"rows":_args['data'].shape[0]},"partial":{"path":_pname,"rows":data_comp.shape[0]} }
|
||||
|
@ -354,7 +394,12 @@ if __name__ == '__main__' :
|
|||
else:
|
||||
generator.generate(args)
|
||||
# Components.generate(args)
|
||||
|
||||
elif 'shuffle' in SYS_ARGS:
|
||||
args['data'] = DATA[0]
|
||||
_df = (Components()).shuffle(args)
|
||||
print (DATA[0][args['columns']])
|
||||
print ()
|
||||
print (_df[args['columns']])
|
||||
else:
|
||||
|
||||
# DATA = np.array_split(DATA,PART_SIZE)
|
||||
|
|
Loading…
Reference in New Issue