Compare commits
3 Commits
dd58a92eb5
...
ca09ea0202
Author | SHA1 | Date |
---|---|---|
Steve Nyemba | ca09ea0202 | |
Steve Nyemba | 2ad56dcff6 | |
Steve Nyemba | 523f7364f1 |
|
@ -192,9 +192,10 @@ class Learner(Process):
|
|||
finally:
|
||||
pass
|
||||
|
||||
_log[name] = self._df[name].dtypes.name
|
||||
_log = {'action':'structure','input':_log}
|
||||
self.log(**_log)
|
||||
# _log[name] = self._df[name].dtypes.name
|
||||
# _log[name] = reader.meta()
|
||||
# _log = {'action':'structure','input':_log}
|
||||
# self.log(**_log)
|
||||
#
|
||||
# convert the data to binary here ...
|
||||
_schema = self.get_schema()
|
||||
|
@ -451,10 +452,10 @@ class Generator (Learner):
|
|||
FORMAT = '%Y-%m-%-d %H:%M:%S'
|
||||
SIZE = 19
|
||||
|
||||
if SIZE > 0 :
|
||||
# if SIZE > 0 :
|
||||
|
||||
values = pd.to_datetime(_df[name], format=FORMAT).astype(np.datetime64)
|
||||
# _df[name] = [_date[:SIZE].strip() for _date in values]
|
||||
# values = pd.to_datetime(_df[name], format=FORMAT).astype(np.datetime64)
|
||||
# # _df[name] = [_date[:SIZE].strip() for _date in values]
|
||||
|
||||
|
||||
# _df[name] = _df[name].astype(str)
|
||||
|
@ -464,6 +465,7 @@ class Generator (Learner):
|
|||
pass #;_df[name] = _df[name].fillna('').astype('datetime64[ns]')
|
||||
|
||||
except Exception as e:
|
||||
print (e)
|
||||
pass
|
||||
finally:
|
||||
pass
|
||||
|
@ -502,10 +504,18 @@ class Generator (Learner):
|
|||
else:
|
||||
_store = None
|
||||
N = 0
|
||||
|
||||
|
||||
_haslist = np.sum([type(_item)==list for _item in self.columns]) > 0
|
||||
_schema = self.get_schema()
|
||||
|
||||
for _iodf in _candidates :
|
||||
_df = self._df.copy()
|
||||
if self.columns :
|
||||
|
||||
if self.columns and _haslist is False:
|
||||
_df[self.columns] = _iodf[self.columns]
|
||||
else:
|
||||
_df = _iodf
|
||||
|
||||
|
||||
N += _df.shape[0]
|
||||
|
@ -528,19 +538,27 @@ class Generator (Learner):
|
|||
|
||||
|
||||
|
||||
_schema = self.get_schema()
|
||||
|
||||
|
||||
_df = self.format(_df,_schema)
|
||||
_log = [{"name":_schema[i]['name'],"dataframe":_df[_df.columns[i]].dtypes.name,"schema":_schema[i]['type']} for i in np.arange(len(_schema)) ]
|
||||
self.log(**{"action":"consolidate","input":_log})
|
||||
# _log = [{"name":_schema[i]['name'],"dataframe":_df[_df.columns[i]].dtypes.name,"schema":_schema[i]['type']} for i in np.arange(len(_schema)) ]
|
||||
self.log(**{"action":"consolidate","input":{"rows":N,"candidate":_candidates.index(_iodf)}})
|
||||
|
||||
|
||||
if _store :
|
||||
_log = {'action':'write','input':{'table':self.info['from'],'schema':[],'rows':_df.shape[0]}}
|
||||
|
||||
writer = transport.factory.instance(**_store)
|
||||
if _store['provider'] == 'bigquery':
|
||||
writer.write(_df,schema=[],table=self.info['from'])
|
||||
try:
|
||||
_log['schema'] = _schema
|
||||
writer.write(_df,schema=_schema,table=self.info['from'])
|
||||
except Exception as e:
|
||||
_log['schema'] = []
|
||||
writer.write(_df,table=self.info['from'])
|
||||
else:
|
||||
writer.write(_df,table=self.info['from'])
|
||||
self.log(**_log)
|
||||
else:
|
||||
self.cache.append(_df)
|
||||
|
||||
|
@ -570,17 +588,21 @@ class Shuffle(Generator):
|
|||
_invColumns = []
|
||||
_colNames = []
|
||||
_ucolNames= []
|
||||
_rmColumns = []
|
||||
for _item in self.info['columns'] :
|
||||
if type(_item) == list :
|
||||
_invColumns.append(_item)
|
||||
_rmColumns += _item
|
||||
|
||||
elif _item in self._df.columns.tolist():
|
||||
_colNames.append(_item)
|
||||
#
|
||||
# At this point we build the matrix of elements we are interested in considering the any unspecified column
|
||||
#
|
||||
|
||||
if _colNames :
|
||||
_invColumns.append(_colNames)
|
||||
_ucolNames = list(set(self._df.columns) - set(_colNames))
|
||||
_ucolNames = list(set(self._df.columns) - set(_colNames) - set(_rmColumns))
|
||||
if _ucolNames :
|
||||
_invColumns += [ [_name] for _name in _ucolNames]
|
||||
|
||||
|
@ -607,6 +629,7 @@ class Shuffle(Generator):
|
|||
_log = {'action':'io-data','input':{'candidates':1,'rows':int(self._df.shape[0])}}
|
||||
self.log(**_log)
|
||||
try:
|
||||
|
||||
self.post([self._df])
|
||||
self.log(**{'action':'completed','input':{'candidates':1,'rows':int(self._df.shape[0])}})
|
||||
except Exception as e :
|
||||
|
|
Loading…
Reference in New Issue