Compare commits

..

No commits in common. "e5af702ddb4c04fa668f84018879c379f597e26d" and "b2cf5ead53b51bfbe6dd331cf7f2c271605a0d0c" have entirely different histories.

5 changed files with 17 additions and 73 deletions

View File

@ -103,12 +103,11 @@ class GNet :
CHECKPOINT_SKIPS = int(args['checkpoint_skips']) if 'checkpoint_skips' in args else int(self.MAX_EPOCHS/10)
CHECKPOINT_SKIPS = 1 if CHECKPOINT_SKIPS < 1 else CHECKPOINT_SKIPS
# if self.MAX_EPOCHS < 2*CHECKPOINT_SKIPS :
# CHECKPOINT_SKIPS = 2
# self.CHECKPOINTS = [1,self.MAX_EPOCHS] + np.repeat( np.divide(self.MAX_EPOCHS,CHECKPOINT_SKIPS),CHECKPOINT_SKIPS ).cumsum().astype(int).tolist()
self.CHECKPOINTS = np.repeat(CHECKPOINT_SKIPS, self.MAX_EPOCHS/ CHECKPOINT_SKIPS).cumsum().astype(int).tolist()
self.ROW_COUNT = args['real'].shape[0] if 'real' in args else 100
self.CONTEXT = args['context']
self.ATTRIBUTES = {"id":args['column_id'] if 'column_id' in args else None,"synthetic":args['column'] if 'column' in args else None}
@ -288,17 +287,8 @@ class Generator (GNet):
"""
def __init__(self,**args):
if 'trainer' not in args :
GNet.__init__(self,**args)
self.discriminator = Discriminator(**args)
else:
_args = {}
_trainer = args['trainer']
for key in vars(_trainer) :
value = getattr(_trainer,key)
setattr(self,key,value)
_args[key] = value
self.discriminator = Discriminator(**_args)
GNet.__init__(self,**args)
self.discriminator = Discriminator(**args)
def loss(self,**args):
fake = args['fake']
label = args['label']

View File

@ -33,7 +33,6 @@ class Learner(Process):
super(Learner, self).__init__()
self._arch = {'init':_args}
self.ndx = 0
self._queue = Queue()
self.lock = RLock()
@ -45,8 +44,6 @@ class Learner(Process):
self.gpu = None
self.info = _args['info']
if 'context' not in self.info :
self.info['context'] = self.info['from']
self.columns = self.info['columns'] if 'columns' in self.info else None
self.store = _args['store']
@ -100,12 +97,9 @@ class Learner(Process):
# __info = (pd.DataFrame(self._states)[['name','path','args']]).to_dict(orient='records')
if self._states :
__info = {}
# print (self._states)
for key in self._states :
_pipeline = self._states[key]
# __info[key] = ([{'name':_payload['name']} for _payload in _pipeline])
__info[key] = [{"name":_item['name'],"args":_item['args'],"path":_item['path']} for _item in self._states[key] if _item ]
__info[key] = [{"name":_item['name'],"args":_item['args'],"path":_item['path']} for _item in self._states[key]]
self.log(object='state-space',action='load',input=__info)
@ -276,23 +270,18 @@ class Trainer(Learner):
#
_epochs = [_e for _e in gTrain.logs['epochs'] if _e['path'] != '']
_epochs.sort(key=lambda _item: _item['loss'],reverse=False)
_args['network_args']['max_epochs'] = _epochs[0]['epochs']
self.log(action='autopilot',input={'epoch':_epochs[0]})
g = Generator(**_args)
# g.run()
end = datetime.now() #.strftime('%Y-%m-%d %H:%M:%S')
_min = float((end-beg).seconds/ 60)
_logs = {'action':'train','input':{'start':beg.strftime('%Y-%m-%d %H:%M:%S'),'minutes':_min,"unique_counts":self._encoder._io[0]}}
self.log(**_logs)
if self.autopilot :
# g = Generator(**_args)
g = Generator(**self._arch['init'])
self._g = g
self._g = g
if self.autopilot :
self._g.run()
#
#@TODO Find a way to have the data in the object ....
@ -311,15 +300,10 @@ class Generator (Learner):
#
# We need to load the mapping information for the space we are working with ...
#
self.network_args['candidates'] = int(_args['candidates']) if 'candidates' in _args else 1
# filename = os.sep.join([self.network_args['logs'],'output',self.network_args['context'],'map.json'])
_suffix = self.network_args['context']
filename = os.sep.join([self.network_args['logs'],'output',self.network_args['context'],'meta-',_suffix,'.json'])
filename = os.sep.join([self.network_args['logs'],'output',self.network_args['context'],'map.json'])
self.log(**{'action':'init-map','input':{'filename':filename,'exists':os.path.exists(filename)}})
if os.path.exists(filename):
file = open(filename)
self._map = json.loads(file.read())
file.close()
@ -596,7 +580,6 @@ class factory :
"""
#
if _args['apply'] in [apply.RANDOM] :
pthread = Shuffle(**_args)

View File

@ -69,7 +69,7 @@ class Date(Post):
"""
"""
pass
pass
class Approximate(Post):
def apply(**_args):
pass

View File

@ -31,22 +31,12 @@ class State :
continue
pointer = _item['module']
if type(pointer).__name__ != 'function':
_args = _item['args'] if 'args' in _item else {}
else:
pointer = _item['module']
_args = _item['args'] if 'args' in _item else {}
_args = _item['args']
_data = pointer(_data,_args)
return _data
@staticmethod
def instance(_args):
"""
"""
pre = []
post=[]
@ -55,20 +45,8 @@ class State :
#
# If the item has a path property is should be ignored
path = _args[key]['path'] if 'path' in _args[key] else ''
# out[key] = [ State._build(dict(_item,**{'path':path})) if 'path' not in _item else State._build(_item) for _item in _args[key]['pipeline']]
out[key] = []
for _item in _args[key]['pipeline'] :
if type(_item).__name__ == 'function':
_stageInfo = {'module':_item,'name':_item.__name__,'args':{},'path':''}
pass
else:
if 'path' in _item :
_stageInfo = State._build(dict(_item,**{'path':path}))
else :
_stageInfo= State._build(_item)
out[key].append(_stageInfo)
# print ([out])
out[key] = [ State._build(dict(_item,**{'path':path})) if 'path' not in _item else State._build(_item) for _item in _args[key]['pipeline']]
return out
# if 'pre' in _args:
# path = _args['pre']['path'] if 'path' in _args['pre'] else ''
@ -90,18 +68,11 @@ class State :
pass
@staticmethod
def _build(_args):
"""
This function builds the object {module,path} where module is extracted from a file (if needed)
:param _args dictionary containing attributes that can be value pair
It can also be a function
"""
#
# In the advent an actual pointer is passed we should do the following
_info = State._extract(_args)
# _info = dict(_args,**_info)
_info['module'] = State._instance(_info)
_info['module'] = State._instance(_info)
return _info if _info['module'] is not None else None
@staticmethod

View File

@ -4,7 +4,7 @@ import sys
def read(fname):
return open(os.path.join(os.path.dirname(__file__), fname)).read()
args = {"name":"data-maker","version":"1.6.6",
args = {"name":"data-maker","version":"1.6.4",
"author":"Vanderbilt University Medical Center","author_email":"steve.l.nyemba@vumc.org","license":"MIT",
"packages":find_packages(),"keywords":["healthcare","data","transport","protocol"]}
args["install_requires"] = ['data-transport@git+https://github.com/lnyemba/data-transport.git','tensorflow']