584 lines
26 KiB
Python
584 lines
26 KiB
Python
"""
|
|
usage :
|
|
optional :
|
|
--num_gpu number of gpus to use will default to 1
|
|
--epoch steps per epoch default to 256
|
|
"""
|
|
import tensorflow as tf
|
|
from tensorflow.contrib.layers import l2_regularizer
|
|
import numpy as np
|
|
import pandas as pd
|
|
import time
|
|
import os
|
|
import sys
|
|
from data.params import SYS_ARGS
|
|
from data.bridge import Binary
|
|
import json
|
|
import pickle
|
|
|
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
|
|
|
# STEPS_PER_EPOCH = int(SYS_ARGS['epoch']) if 'epoch' in SYS_ARGS else 256
|
|
# NUM_GPUS = 1 if 'num_gpu' not in SYS_ARGS else int(SYS_ARGS['num_gpu'])
|
|
# BATCHSIZE_PER_GPU = 2000
|
|
# TOTAL_BATCHSIZE = BATCHSIZE_PER_GPU * NUM_GPUS
|
|
|
|
class void :
|
|
pass
|
|
class GNet :
|
|
"""
|
|
This is the base class of a generative network functions, the details will be implemented in the subclasses.
|
|
An instance of this class is accessed as follows
|
|
object.layers.normalize applies batch normalization or otherwise
|
|
obect.get.variables instanciate variables on cpu and return a reference (tensor)
|
|
"""
|
|
def __init__(self,**args):
|
|
self.layers = void()
|
|
self.layers.normalize = self.normalize
|
|
|
|
|
|
self.NUM_GPUS = 1 if 'num_gpu' not in args else args['num_gpu']
|
|
|
|
|
|
self.X_SPACE_SIZE = args['real'].shape[1] if 'real' in args else 854
|
|
self.G_STRUCTURE = [128,128] #[self.X_SPACE_SIZE, self.X_SPACE_SIZE]
|
|
self.D_STRUCTURE = [self.X_SPACE_SIZE,256,128] #[self.X_SPACE_SIZE, self.X_SPACE_SIZE*2, self.X_SPACE_SIZE] #-- change 854 to number of diagnosis
|
|
# self.NUM_LABELS = 8 if 'label' not in args elif len(args['label'].shape) args['label'].shape[1]
|
|
if 'label' in args and len(args['label'].shape) == 2 :
|
|
self.NUM_LABELS = args['label'].shape[1]
|
|
elif 'label' in args and len(args['label']) == 1 :
|
|
self.NUM_LABELS = args['label'].shape[0]
|
|
else:
|
|
self.NUM_LABELS = 8
|
|
self.Z_DIM = 128 #self.X_SPACE_SIZE
|
|
self.BATCHSIZE_PER_GPU = args['real'].shape[0] if 'real' in args else 256
|
|
self.TOTAL_BATCHSIZE = self.BATCHSIZE_PER_GPU * self.NUM_GPUS
|
|
self.STEPS_PER_EPOCH = 256 #int(np.load('ICD9/train.npy').shape[0] / 2000)
|
|
self.MAX_EPOCHS = 10 if 'max_epochs' not in args else int(args['max_epochs'])
|
|
self.ROW_COUNT = args['real'].shape[0] if 'real' in args else 100
|
|
self.CONTEXT = args['context']
|
|
self.ATTRIBUTES = {"id":args['column_id'] if 'column_id' in args else None,"synthetic":args['column'] if 'column' in args else None}
|
|
self._REAL = args['real'] if 'real' in args else None
|
|
self._LABEL = args['label'] if 'label' in args else None
|
|
|
|
self.get = void()
|
|
self.get.variables = self._variable_on_cpu
|
|
self.get.suffix = lambda : "-".join(self.ATTRIBUTES['synthetic']) if isinstance(self.ATTRIBUTES['synthetic'],list) else self.ATTRIBUTES['synthetic']
|
|
self.logger = args['logger'] if 'logger' in args and args['logger'] else None
|
|
self.init_logs(**args)
|
|
|
|
def init_logs(self,**args):
|
|
self.log_dir = args['logs'] if 'logs' in args else 'logs'
|
|
self.mkdir(self.log_dir)
|
|
#
|
|
#
|
|
for key in ['train','output'] :
|
|
self.mkdir(os.sep.join([self.log_dir,key]))
|
|
self.mkdir (os.sep.join([self.log_dir,key,self.CONTEXT]))
|
|
|
|
self.train_dir = os.sep.join([self.log_dir,'train',self.CONTEXT])
|
|
self.out_dir = os.sep.join([self.log_dir,'output',self.CONTEXT])
|
|
|
|
def load_meta(self,column):
|
|
"""
|
|
This function is designed to accomodate the uses of the sub-classes outside of a strict dependency model.
|
|
Because prediction and training can happen independently
|
|
"""
|
|
# suffix = "-".join(column) if isinstance(column,list)else column
|
|
suffix = self.get.suffix()
|
|
_name = os.sep.join([self.out_dir,'meta-'+suffix+'.json'])
|
|
if os.path.exists(_name) :
|
|
attr = json.loads((open(_name)).read())
|
|
for key in attr :
|
|
value = attr[key]
|
|
setattr(self,key,value)
|
|
self.train_dir = os.sep.join([self.log_dir,'train',self.CONTEXT])
|
|
self.out_dir = os.sep.join([self.log_dir,'output',self.CONTEXT])
|
|
|
|
|
|
def log_meta(self,**args) :
|
|
_object = {
|
|
'CONTEXT':self.CONTEXT,
|
|
'ATTRIBUTES':self.ATTRIBUTES,
|
|
'BATCHSIZE_PER_GPU':self.BATCHSIZE_PER_GPU,
|
|
'Z_DIM':self.Z_DIM,
|
|
"X_SPACE_SIZE":self.X_SPACE_SIZE,
|
|
"D_STRUCTURE":self.D_STRUCTURE,
|
|
"G_STRUCTURE":self.G_STRUCTURE,
|
|
"NUM_GPUS":self.NUM_GPUS,
|
|
"NUM_LABELS":self.NUM_LABELS,
|
|
"MAX_EPOCHS":self.MAX_EPOCHS,
|
|
"ROW_COUNT":self.ROW_COUNT
|
|
}
|
|
if args and 'key' in args and 'value' in args :
|
|
key = args['key']
|
|
value= args['value']
|
|
object[key] = value
|
|
# suffix = "-".join(self.column) if isinstance(self.column,list) else self.column
|
|
suffix = self.get.suffix()
|
|
_name = os.sep.join([self.out_dir,'meta-'+suffix])
|
|
|
|
f = open(_name+'.json','w')
|
|
f.write(json.dumps(_object))
|
|
return _object
|
|
def mkdir (self,path):
|
|
if not os.path.exists(path) :
|
|
os.mkdir(path)
|
|
|
|
|
|
def normalize(self,**args):
|
|
"""
|
|
This function will perform a batch normalization on an network layer
|
|
inputs input layer of the neural network
|
|
name name of the scope the
|
|
labels labels (attributes not synthesized) by default None
|
|
n_labels number of labels default None
|
|
"""
|
|
inputs = args['inputs']
|
|
name = args['name']
|
|
labels = None if 'labels' not in args else args['labels']
|
|
n_labels= None if 'n_labels' not in args else args['n_labels']
|
|
shift = [0] if self.__class__.__name__.lower() == 'generator' else [1] #-- not sure what this is doing
|
|
mean, var = tf.nn.moments(inputs, shift, keep_dims=True)
|
|
shape = inputs.shape[1].value
|
|
offset_m = self.get.variables(shape=[n_labels,shape], name='offset'+name,
|
|
initializer=tf.zeros_initializer)
|
|
scale_m = self.get.variables(shape=[n_labels,shape], name='scale'+name,
|
|
initializer=tf.ones_initializer)
|
|
|
|
offset = tf.nn.embedding_lookup(offset_m, labels)
|
|
scale = tf.nn.embedding_lookup(scale_m, labels)
|
|
result = tf.nn.batch_normalization(inputs, mean, var, offset, scale, 1e-8)
|
|
return result
|
|
|
|
def _variable_on_cpu(self,**args):
|
|
"""
|
|
This function makes sure variables/tensors are not created on the GPU but rather on the CPU
|
|
"""
|
|
|
|
name = args['name']
|
|
shape = args['shape']
|
|
initializer=None if 'initializer' not in args else args['initializer']
|
|
with tf.device('/cpu:0') :
|
|
cpu_var = tf.compat.v1.get_variable(name,shape,initializer= initializer)
|
|
return cpu_var
|
|
def average_gradients(self,tower_grads):
|
|
average_grads = []
|
|
for grad_and_vars in zip(*tower_grads):
|
|
grads = []
|
|
for g, _ in grad_and_vars:
|
|
expanded_g = tf.expand_dims(g, 0)
|
|
grads.append(expanded_g)
|
|
|
|
grad = tf.concat(axis=0, values=grads)
|
|
grad = tf.reduce_mean(grad, 0)
|
|
|
|
v = grad_and_vars[0][1]
|
|
grad_and_var = (grad, v)
|
|
average_grads.append(grad_and_var)
|
|
return average_grads
|
|
|
|
|
|
class Generator (GNet):
|
|
"""
|
|
This class is designed to handle generation of candidate datasets for this it will aggregate a discriminator, this allows the generator not to be random
|
|
|
|
"""
|
|
def __init__(self,**args):
|
|
GNet.__init__(self,**args)
|
|
self.discriminator = Discriminator(**args)
|
|
def loss(self,**args):
|
|
fake = args['fake']
|
|
label = args['label']
|
|
y_hat_fake = self.discriminator.network(inputs=fake, label=label)
|
|
#all_regs = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
|
|
all_regs = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES)
|
|
loss = -tf.reduce_mean(y_hat_fake) + sum(all_regs)
|
|
#tf.add_to_collection('glosses', loss)
|
|
tf.compat.v1.add_to_collection('glosses', loss)
|
|
return loss, loss
|
|
def load_meta(self, column):
|
|
super().load_meta(column)
|
|
self.discriminator.load_meta(column)
|
|
def network(self,**args) :
|
|
"""
|
|
This function will build the network that will generate the synthetic candidates
|
|
:inputs matrix of data that we need
|
|
:dim dimensions of ...
|
|
"""
|
|
x = args['inputs']
|
|
tmp_dim = self.Z_DIM if 'dim' not in args else args['dim']
|
|
label = args['label']
|
|
|
|
with tf.compat.v1.variable_scope('G', reuse=tf.compat.v1.AUTO_REUSE , regularizer=l2_regularizer(0.00001)):
|
|
for i, dim in enumerate(self.G_STRUCTURE[:-1]):
|
|
kernel = self.get.variables(name='W_' + str(i), shape=[tmp_dim, dim])
|
|
h1 = self.normalize(inputs=tf.matmul(x, kernel),shift=0, name='cbn' + str(i), labels=label, n_labels=self.NUM_LABELS)
|
|
h2 = tf.nn.relu(h1)
|
|
x = x + h2
|
|
tmp_dim = dim
|
|
i = len(self.G_STRUCTURE) - 1
|
|
#
|
|
# This seems to be an extra hidden layer:
|
|
# It's goal is to map continuous values to discrete values (pre-trained to do this)
|
|
kernel = self.get.variables(name='W_' + str(i), shape=[tmp_dim, self.G_STRUCTURE[-1]])
|
|
h1 = self.normalize(inputs=tf.matmul(x, kernel), name='cbn' + str(i),
|
|
labels=label, n_labels=self.NUM_LABELS)
|
|
h2 = tf.nn.tanh(h1)
|
|
x = x + h2
|
|
# This seems to be the output layer
|
|
#
|
|
kernel = self.get.variables(name='W_' + str(i+1), shape=[self.Z_DIM, self.X_SPACE_SIZE])
|
|
bias = self.get.variables(name='b_' + str(i+1), shape=[self.X_SPACE_SIZE])
|
|
x = tf.nn.sigmoid(tf.add(tf.matmul(x, kernel), bias))
|
|
return x
|
|
|
|
class Discriminator(GNet):
|
|
def __init__(self,**args):
|
|
GNet.__init__(self,**args)
|
|
def network(self,**args):
|
|
"""
|
|
This function will apply a computational graph on a dataset passed in with the associated labels and the last layer must have a single output (neuron)
|
|
:inputs
|
|
:label
|
|
"""
|
|
x = args['inputs']
|
|
label = args['label']
|
|
with tf.compat.v1.variable_scope('D', reuse=tf.compat.v1.AUTO_REUSE , regularizer=l2_regularizer(0.00001)):
|
|
for i, dim in enumerate(self.D_STRUCTURE[1:]):
|
|
kernel = self.get.variables(name='W_' + str(i), shape=[self.D_STRUCTURE[i], dim])
|
|
bias = self.get.variables(name='b_' + str(i), shape=[dim])
|
|
# print (["\t",bias,kernel])
|
|
x = tf.nn.relu(tf.add(tf.matmul(x, kernel), bias))
|
|
x = self.normalize(inputs=x, name='cln' + str(i), shift=1,labels=label, n_labels=self.NUM_LABELS)
|
|
i = len(self.D_STRUCTURE)
|
|
kernel = self.get.variables(name='W_' + str(i), shape=[self.D_STRUCTURE[-1], 1])
|
|
bias = self.get.variables(name='b_' + str(i), shape=[1])
|
|
y = tf.add(tf.matmul(x, kernel), bias)
|
|
return y
|
|
|
|
def loss(self,**args) :
|
|
"""
|
|
This function compute the loss of
|
|
:real
|
|
:fake
|
|
:label
|
|
"""
|
|
real = args['real']
|
|
fake = args['fake']
|
|
label = args['label']
|
|
epsilon = tf.random.uniform(shape=[self.BATCHSIZE_PER_GPU,1],minval=0,maxval=1)
|
|
|
|
x_hat = real + epsilon * (fake - real)
|
|
y_hat_fake = self.network(inputs=fake, label=label)
|
|
|
|
y_hat_real = self.network(inputs=real, label=label)
|
|
y_hat = self.network(inputs=x_hat, label=label)
|
|
|
|
grad = tf.gradients(y_hat, [x_hat])[0]
|
|
slopes = tf.sqrt(tf.reduce_sum(tf.square(grad), 1))
|
|
gradient_penalty = tf.reduce_mean((slopes - 1.) ** 2)
|
|
#all_regs = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
|
|
all_regs = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES)
|
|
w_distance = -tf.reduce_mean(y_hat_real) + tf.reduce_mean(y_hat_fake)
|
|
loss = w_distance + 10 * gradient_penalty + sum(all_regs)
|
|
#tf.add_to_collection('dlosses', loss)
|
|
tf.compat.v1.add_to_collection('dlosses', loss)
|
|
|
|
return w_distance, loss
|
|
class Train (GNet):
|
|
def __init__(self,**args):
|
|
GNet.__init__(self,**args)
|
|
self.generator = Generator(**args)
|
|
self.discriminator = Discriminator(**args)
|
|
self._REAL = args['real']
|
|
self._LABEL= args['label']
|
|
self.column = args['column']
|
|
# print ([" *** ",self.BATCHSIZE_PER_GPU])
|
|
|
|
self.meta = self.log_meta()
|
|
def load_meta(self, column):
|
|
"""
|
|
This function will delegate the calls to load meta data to it's dependents
|
|
column name
|
|
"""
|
|
super().load_meta(column)
|
|
self.generator.load_meta(column)
|
|
self.discriminator.load_meta(column)
|
|
def loss(self,**args):
|
|
"""
|
|
This function will compute a "tower" loss of the generated candidate against real data
|
|
Training will consist in having both generator and discriminators
|
|
:scope
|
|
:stage
|
|
:real
|
|
:label
|
|
"""
|
|
|
|
scope = args['scope']
|
|
stage = args['stage']
|
|
real = args['real']
|
|
label = args['label']
|
|
label = tf.cast(label, tf.int32)
|
|
#
|
|
# @TODO: Ziqi needs to explain what's going on here
|
|
m = [[i] for i in np.arange(self._LABEL.shape[1]-2)]
|
|
label = label[:, 1] * len(m) + tf.squeeze(
|
|
tf.matmul(label[:, 2:], tf.constant(m, dtype=tf.int32))
|
|
)
|
|
# label = label[:,1] * 4 + tf.squeeze( label[:,2]*[[0],[1],[2],[3]] )
|
|
z = tf.random.normal(shape=[self.BATCHSIZE_PER_GPU, self.Z_DIM])
|
|
|
|
fake = self.generator.network(inputs=z, label=label)
|
|
if stage == 'D':
|
|
w, loss = self.discriminator.loss(real=real, fake=fake, label=label)
|
|
#losses = tf.get_collection('dlosses', scope)
|
|
losses = tf.compat.v1.get_collection('dlosses', scope)
|
|
else:
|
|
w, loss = self.generator.loss(fake=fake, label=label)
|
|
#losses = tf.get_collection('glosses', scope)
|
|
losses = tf.compat.v1.get_collection('glosses', scope)
|
|
|
|
total_loss = tf.add_n(losses, name='total_loss')
|
|
|
|
return total_loss, w
|
|
def input_fn(self):
|
|
"""
|
|
This function seems to produce
|
|
"""
|
|
features_placeholder = tf.compat.v1.placeholder(shape=self._REAL.shape, dtype=tf.float32)
|
|
labels_placeholder = tf.compat.v1.placeholder(shape=self._LABEL.shape, dtype=tf.float32)
|
|
dataset = tf.data.Dataset.from_tensor_slices((features_placeholder, labels_placeholder))
|
|
dataset = dataset.repeat(10000)
|
|
dataset = dataset.batch(batch_size=self.BATCHSIZE_PER_GPU)
|
|
dataset = dataset.prefetch(1)
|
|
iterator = dataset.make_initializable_iterator()
|
|
# next_element = iterator.get_next()
|
|
# init_op = iterator.initializer
|
|
return iterator, features_placeholder, labels_placeholder
|
|
|
|
def network(self,**args):
|
|
# def graph(stage, opt):
|
|
# global_step = tf.get_variable(stage+'_step', [], initializer=tf.constant_initializer(0), trainable=False)
|
|
stage = args['stage']
|
|
opt = args['opt']
|
|
tower_grads = []
|
|
per_gpu_w = []
|
|
iterator, features_placeholder, labels_placeholder = self.input_fn()
|
|
with tf.compat.v1.variable_scope(tf.compat.v1.get_variable_scope()):
|
|
for i in range(self.NUM_GPUS):
|
|
with tf.device('/gpu:%d' % i):
|
|
with tf.name_scope('%s_%d' % ('TOWER', i)) as scope:
|
|
(real, label) = iterator.get_next()
|
|
loss, w = self.loss(scope=scope, stage=stage, real=self._REAL, label=self._LABEL)
|
|
#tf.get_variable_scope().reuse_variables()
|
|
tf.compat.v1.get_variable_scope().reuse_variables()
|
|
#vars_ = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=stage)
|
|
vars_ = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES, scope=stage)
|
|
grads = opt.compute_gradients(loss, vars_)
|
|
tower_grads.append(grads)
|
|
per_gpu_w.append(w)
|
|
|
|
grads = self.average_gradients(tower_grads)
|
|
apply_gradient_op = opt.apply_gradients(grads)
|
|
|
|
mean_w = tf.reduce_mean(per_gpu_w)
|
|
train_op = apply_gradient_op
|
|
return train_op, mean_w, iterator, features_placeholder, labels_placeholder
|
|
def apply(self,**args):
|
|
# max_epochs = args['max_epochs'] if 'max_epochs' in args else 10
|
|
REAL = self._REAL
|
|
LABEL= self._LABEL
|
|
with tf.device('/cpu:0'):
|
|
opt_d = tf.compat.v1.train.AdamOptimizer(1e-4)
|
|
opt_g = tf.compat.v1.train.AdamOptimizer(1e-4)
|
|
|
|
train_d, w_distance, iterator_d, features_placeholder_d, labels_placeholder_d = self.network(stage='D', opt=opt_d)
|
|
train_g, _, iterator_g, features_placeholder_g, labels_placeholder_g = self.network(stage='G', opt=opt_g)
|
|
# saver = tf.train.Saver()
|
|
saver = tf.compat.v1.train.Saver()
|
|
# init = tf.global_variables_initializer()
|
|
init = tf.compat.v1.global_variables_initializer()
|
|
logs = []
|
|
#with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) as sess:
|
|
with tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(allow_soft_placement=True, log_device_placement=False)) as sess:
|
|
sess.run(init)
|
|
sess.run(iterator_d.initializer,
|
|
feed_dict={features_placeholder_d: REAL, labels_placeholder_d: LABEL})
|
|
sess.run(iterator_g.initializer,
|
|
feed_dict={features_placeholder_g: REAL, labels_placeholder_g: LABEL})
|
|
|
|
for epoch in range(1, self.MAX_EPOCHS + 1):
|
|
start_time = time.time()
|
|
w_sum = 0
|
|
for i in range(self.STEPS_PER_EPOCH):
|
|
for _ in range(2):
|
|
_, w = sess.run([train_d, w_distance])
|
|
w_sum += w
|
|
sess.run(train_g)
|
|
duration = time.time() - start_time
|
|
|
|
assert not np.isnan(w_sum), 'Model diverged with loss = NaN'
|
|
|
|
format_str = 'epoch: %d, w_distance = %f (%.1f)'
|
|
print(format_str % (epoch, -w_sum/(self.STEPS_PER_EPOCH*2), duration))
|
|
# print (dir (w_distance))
|
|
|
|
logs.append({"epoch":epoch,"distance":-w_sum/(self.STEPS_PER_EPOCH*2) })
|
|
|
|
if epoch % self.MAX_EPOCHS == 0:
|
|
# suffix = "-".join(self.ATTRIBUTES['synthetic']) if isinstance(self.ATTRIBUTES['synthetic'],list) else self.ATTRIBUTES['synthetic']
|
|
suffix = self.get.suffix()
|
|
_name = os.sep.join([self.train_dir,suffix])
|
|
# saver.save(sess, self.train_dir, write_meta_graph=False, global_step=epoch)
|
|
saver.save(sess, _name, write_meta_graph=False, global_step=epoch)
|
|
#
|
|
#
|
|
if self.logger :
|
|
row = {"logs":logs} #,"model":pickle.dump(sess)}
|
|
|
|
self.logger.write(row=row)
|
|
|
|
class Predict(GNet):
|
|
"""
|
|
This class uses synthetic data given a learned model
|
|
"""
|
|
def __init__(self,**args):
|
|
GNet.__init__(self,**args)
|
|
self.generator = Generator(**args)
|
|
self.values = args['values']
|
|
def load_meta(self, column):
|
|
super().load_meta(column)
|
|
self.generator.load_meta(column)
|
|
def apply(self,**args):
|
|
# print (self.train_dir)
|
|
# suffix = "-".join(self.ATTRIBUTES['synthetic']) if isinstance(self.ATTRIBUTES['synthetic'],list) else self.ATTRIBUTES['synthetic']
|
|
suffix = self.get.suffix()
|
|
model_dir = os.sep.join([self.train_dir,suffix+'-'+str(self.MAX_EPOCHS)])
|
|
demo = self._LABEL #np.zeros([self.ROW_COUNT,self.NUM_LABELS]) #args['de"shape":{"LABEL":list(self._LABEL.shape)} mo']
|
|
tf.compat.v1.reset_default_graph()
|
|
z = tf.random.normal(shape=[self.BATCHSIZE_PER_GPU, self.Z_DIM])
|
|
y = tf.compat.v1.placeholder(shape=[self.BATCHSIZE_PER_GPU, self.NUM_LABELS], dtype=tf.int32)
|
|
ma = [[i] for i in np.arange(self.NUM_LABELS - 2)]
|
|
label = y[:, 1] * len(ma) + tf.squeeze(tf.matmul(y[:, 2:], tf.constant(ma, dtype=tf.int32)))
|
|
|
|
fake = self.generator.network(inputs=z, label=label)
|
|
init = tf.compat.v1.global_variables_initializer()
|
|
saver = tf.compat.v1.train.Saver()
|
|
with tf.compat.v1.Session() as sess:
|
|
|
|
# sess.run(init)
|
|
saver.restore(sess, model_dir)
|
|
labels = np.zeros((self.ROW_COUNT,self.NUM_LABELS) )
|
|
|
|
labels= demo
|
|
f = sess.run(fake,feed_dict={y:labels})
|
|
#
|
|
# if we are dealing with numeric values only we can perform a simple marginal sum against the indexes
|
|
#
|
|
|
|
df = ( pd.DataFrame(np.round(f).astype(np.int32)))
|
|
# i = df.T.index.astype(np.int32) #-- These are numeric pseudonyms
|
|
# df = (i * df).sum(axis=1)
|
|
#
|
|
# In case we are dealing with actual values like diagnosis codes we can perform
|
|
#
|
|
columns = self.ATTRIBUTES['synthetic'] if isinstance(self.ATTRIBUTES['synthetic'],list)else [self.ATTRIBUTES['synthetic']]
|
|
|
|
r = np.zeros((self.ROW_COUNT,len(columns)))
|
|
for col in df :
|
|
i = np.where(df[col])[0]
|
|
r[i] = col
|
|
|
|
df = pd.DataFrame(r,columns=columns)
|
|
|
|
df[df.columns] = (df.apply(lambda value: self.values[ int(value)],axis=1))
|
|
return df.to_dict(orient='lists')
|
|
# return df.to_dict(orient='list')
|
|
# count = str(len(os.listdir(self.out_dir)))
|
|
# _name = os.sep.join([self.out_dir,self.CONTEXT+'-'+count+'.csv'])
|
|
# df.to_csv(_name,index=False)
|
|
|
|
|
|
# output.extend(np.round(f))
|
|
|
|
# for m in range(2):
|
|
# for n in range(2, self.NUM_LABELS):
|
|
# idx1 = (demo[:, m] == 1)
|
|
# idx2 = (demo[:, n] == 1)
|
|
# idx = [idx1[j] and idx2[j] for j in range(len(idx1))]
|
|
# num = np.sum(idx)
|
|
# print ("___________________list__")
|
|
# print (idx1)
|
|
# print (idx2)
|
|
# print (idx)
|
|
# print (num)
|
|
# print ("_____________________")
|
|
# nbatch = int(np.ceil(num / self.BATCHSIZE_PER_GPU))
|
|
# label_input = np.zeros((nbatch*self.BATCHSIZE_PER_GPU, self.NUM_LABELS))
|
|
# label_input[:, n] = 1
|
|
# label_input[:, m] = 1
|
|
# output = []
|
|
# for i in range(nbatch):
|
|
# f = sess.run(fake,feed_dict={y: label_input[i* self.BATCHSIZE_PER_GPU:(i+1)* self.BATCHSIZE_PER_GPU]})
|
|
# output.extend(np.round(f))
|
|
# output = np.array(output)[:num]
|
|
# print ([m,n,output])
|
|
|
|
# np.save(self.out_dir + str(m) + str(n), output)
|
|
|
|
|
|
if __name__ == '__main__' :
|
|
#
|
|
# Now we get things done ...
|
|
column = SYS_ARGS['column']
|
|
column_id = SYS_ARGS['id'] if 'id' in SYS_ARGS else 'person_id'
|
|
column_id = column_id.split(',') if ',' in column_id else column_id
|
|
df = pd.read_csv(SYS_ARGS['raw-data'])
|
|
LABEL = pd.get_dummies(df[column_id]).astype(np.float32).values
|
|
|
|
context = SYS_ARGS['raw-data'].split(os.sep)[-1:][0][:-4]
|
|
if set(['train','learn']) & set(SYS_ARGS.keys()):
|
|
|
|
df = pd.read_csv(SYS_ARGS['raw-data'])
|
|
|
|
# cols = SYS_ARGS['column']
|
|
# _map,_df = (Binary()).Export(df)
|
|
# i = np.arange(_map[column]['start'],_map[column]['end'])
|
|
max_epochs = np.int32(SYS_ARGS['max_epochs']) if 'max_epochs' in SYS_ARGS else 10
|
|
# REAL = _df[:,i]
|
|
REAL = pd.get_dummies(df[column]).astype(np.float32).values
|
|
LABEL = pd.get_dummies(df[column_id]).astype(np.float32).values
|
|
trainer = Train(context=context,max_epochs=max_epochs,real=REAL,label=LABEL,column=column,column_id=column_id)
|
|
trainer.apply()
|
|
|
|
|
|
|
|
|
|
#
|
|
# We should train upon this data
|
|
#
|
|
# -- we need to convert the data-frame to binary matrix, given a column
|
|
#
|
|
pass
|
|
elif 'generate' in SYS_ARGS:
|
|
values = df[column].unique().tolist()
|
|
values.sort()
|
|
|
|
p = Predict(context=context,label=LABEL,values=values,column=column)
|
|
p.load_meta(column)
|
|
r = p.apply()
|
|
print (df)
|
|
print ()
|
|
df[column] = r[column]
|
|
print (df)
|
|
|
|
|
|
else:
|
|
print (SYS_ARGS.keys())
|
|
print (__doc__)
|
|
pass
|
|
|