156 lines
4.2 KiB
Plaintext
156 lines
4.2 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"#### Writing to mongodb\n",
|
||
|
"\n",
|
||
|
"Insure mongodb is actually installed on the system, The cell below creates a dataframe that will be stored within mongodb"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 1,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"2.0.0\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"#\n",
|
||
|
"# Writing to mongodb database\n",
|
||
|
"#\n",
|
||
|
"import transport\n",
|
||
|
"from transport import providers\n",
|
||
|
"import pandas as pd\n",
|
||
|
"_data = pd.DataFrame({\"name\":['James Bond','Steve Rogers','Steve Nyemba'],'age':[55,150,44]})\n",
|
||
|
"mgw = transport.factory.instance(provider=providers.MONGODB,db='demo',collection='friends',context='write')\n",
|
||
|
"mgw.write(_data)\n",
|
||
|
"print (transport.__version__)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"#### Reading from mongodb\n",
|
||
|
"\n",
|
||
|
"The cell below reads the data that has been written by the cell above and computes the average age within a mongodb pipeline. The code in the background executes an aggregation using **db.runCommand**\n",
|
||
|
"\n",
|
||
|
"- Basic read of the designated collection **find=\\<collection>**\n",
|
||
|
"- Executing an aggregate pipeline against a collection **aggreate=\\<collection>**\n",
|
||
|
"\n",
|
||
|
"**NOTE**\n",
|
||
|
"\n",
|
||
|
"It is possible to use **transport.factory.instance** or **transport.instance** they are the same. It allows the maintainers to know that we used a factory design pattern."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 4,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
" name age\n",
|
||
|
"0 James Bond 55\n",
|
||
|
"1 Steve Rogers 150\n",
|
||
|
"--------- STATISTICS ------------\n",
|
||
|
" _id _counts _mean\n",
|
||
|
"0 0 2 102.5\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"\n",
|
||
|
"import transport\n",
|
||
|
"from transport import providers\n",
|
||
|
"mgr = transport.instance(provider=providers.MONGODB,db='foo',collection='friends')\n",
|
||
|
"_df = mgr.read()\n",
|
||
|
"PIPELINE = [{\"$group\":{\"_id\":0,\"_counts\":{\"$sum\":1}, \"_mean\":{\"$avg\":\"$age\"}}}]\n",
|
||
|
"_sdf = mgr.read(aggregate='friends',pipeline=PIPELINE)\n",
|
||
|
"print (_df)\n",
|
||
|
"print ('--------- STATISTICS ------------')\n",
|
||
|
"print (_sdf)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"The cell bellow show the content of an auth_file, in this case if the dataset/table in question is not to be shared then you can use auth_file with information associated with the parameters.\n",
|
||
|
"\n",
|
||
|
"**NOTE**:\n",
|
||
|
"\n",
|
||
|
"The auth_file is intended to be **JSON** formatted"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 1,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"{'host': 'klingon.io',\n",
|
||
|
" 'port': 27017,\n",
|
||
|
" 'username': 'me',\n",
|
||
|
" 'password': 'foobar',\n",
|
||
|
" 'db': 'foo',\n",
|
||
|
" 'collection': 'friends',\n",
|
||
|
" 'authSource': '<authdb>',\n",
|
||
|
" 'mechamism': '<SCRAM-SHA-256|MONGODB-CR|SCRAM-SHA-1>'}"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 1,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"{\n",
|
||
|
" \"host\":\"klingon.io\",\"port\":27017,\"username\":\"me\",\"password\":\"foobar\",\"db\":\"foo\",\"collection\":\"friends\",\n",
|
||
|
" \"authSource\":\"<authdb>\",\"mechamism\":\"<SCRAM-SHA-256|MONGODB-CR|SCRAM-SHA-1>\"\n",
|
||
|
"}"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.9.7"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 2
|
||
|
}
|