documentation
This commit is contained in:
parent
b239a5149f
commit
69e0b4d946
50
README.md
50
README.md
|
@ -1,14 +1,31 @@
|
|||
# Introduction
|
||||
|
||||
This project implements an abstraction of objects that can have access to a variety of data stores, implementing read/write with a simple interface against specific various data-sources. The supported data sources implement functionalities against :
|
||||
This project implements an abstraction of objects that can have access to a variety of data stores, implementing read/write with a simple and expressive interface. This abstraction works with **NoSQL** and **SQL** data stores and leverages **pandas**
|
||||
|
||||
- Rabbitmq-server
|
||||
- Couchdb-server
|
||||
- Mongodb-server
|
||||
- Http Session : {csv,tab,pipe,sql}
|
||||
- Disk{Reader|Writer} : csv, tab, pipe, sql on disk
|
||||
The supported data store providers :
|
||||
|
||||
| Provider | Underlying Drivers | Description |
|
||||
| ---- | ---| ---- |
|
||||
| sqlite| Native SQLite|SQLite3|
|
||||
| postgresql| psycopg2 | PostgreSQL
|
||||
| redshift| psycopg2 | Amazon Redshift
|
||||
| netezza| nzpsql | IBM Neteeza
|
||||
| Files: CSV, TSV| pandas| pandas data-frame
|
||||
| Couchdb| cloudant | Couchbase/Couchdb
|
||||
| mongodb| pymongo | Mongodb
|
||||
| mysql| mysql| Mysql
|
||||
| bigquery| google-bigquery| Google BigQuery
|
||||
| mariadb| mysql| Mariadb
|
||||
| rabbitmq|pika| RabbitMQ Publish/Subscribe
|
||||
|
||||
# Why Use Data-Transport ?
|
||||
|
||||
Mostly data scientists that don't really care about the underlying database and would like to manipulate data transparently.
|
||||
|
||||
1. Familiarity with **pandas data-frames**
|
||||
2. Connectivity **drivers** are included
|
||||
3. Useful for ETL
|
||||
|
||||
Such an interface is used to facilitate data transport in and out of a store for whatever an application may need (log, session management, ...)
|
||||
|
||||
### Installation
|
||||
|
||||
|
@ -21,23 +38,26 @@ Binaries and eggs will be provided later on
|
|||
|
||||
### Usage
|
||||
|
||||
The basic usage revolves around a factory class (to be a singleton)
|
||||
In your code, perform the
|
||||
|
||||
import transport
|
||||
from transport import factory
|
||||
#
|
||||
# importing a mongo reader
|
||||
args = {"host":"<host>:<port>","dbname":"<database>","doc":"<doc_id>",["username":"<username>","password":"<password>"]}
|
||||
mreader = factory.instance(type='mongo.MonoReader',args=args)
|
||||
reader = factory.instance(provider='mongodb',doc=<mydoc>,db=<db-name>)
|
||||
#
|
||||
# reading a document and executing a view
|
||||
# reading a document i.e just applying a find (no filters)
|
||||
#
|
||||
document = mreader.read()
|
||||
result = mreader.view(name)
|
||||
df = mreader.read() #-- pandas data frame
|
||||
df.head()
|
||||
|
||||
#
|
||||
# importing a couchdb reader
|
||||
args = {"url":"<http://host>:<port>","dbname":"<database>","doc":"<doc_id>","username":"<username>","password":"<password>"}
|
||||
creader = factory.instance(type='couch.CouchReader',args=args)
|
||||
# reading from postgresql
|
||||
|
||||
pgreader = factory.instance(type='postgresql',database=<database>,table=<table_name>)
|
||||
pg.read() #-- will read the table by executing a SELECT
|
||||
pg.read(sql=<sql query>)
|
||||
|
||||
#
|
||||
# Reading a document and executing a view
|
||||
|
|
Loading…
Reference in New Issue