adding notebooks (test/examples

This commit is contained in:
Steve Nyemba 2024-04-02 17:00:11 -05:00
parent 677239585c
commit 715e40407a
5 changed files with 770 additions and 0 deletions

169
notebooks/bigquery.ipynb Normal file
View File

@ -0,0 +1,169 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Writing to Google Bigquery\n",
"\n",
"1. Insure you have a Google Bigquery service account key on disk\n",
"2. The service key location is set as an environment variable **BQ_KEY**\n",
"3. The dataset will be automatically created within the project associated with the service key\n",
"\n",
"The cell below creates a dataframe that will be stored within Google Bigquery"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 1/1 [00:00<00:00, 5440.08it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"['data transport version ', '2.0.0']\n"
]
}
],
"source": [
"#\n",
"# Writing to Google Bigquery database\n",
"#\n",
"import transport\n",
"from transport import providers\n",
"import pandas as pd\n",
"import os\n",
"\n",
"PRIVATE_KEY = os.environ['BQ_KEY'] #-- location of the service key\n",
"DATASET = 'demo'\n",
"_data = pd.DataFrame({\"name\":['James Bond','Steve Rogers','Steve Nyemba'],'age':[55,150,44]})\n",
"bqw = transport.factory.instance(provider=providers.BIGQUERY,dataset=DATASET,table='friends',context='write',private_key=PRIVATE_KEY)\n",
"bqw.write(_data,if_exists='replace') #-- default is append\n",
"print (['data transport version ', transport.__version__])\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Reading from Google Bigquery\n",
"\n",
"The cell below reads the data that has been written by the cell above and computes the average age within a Google Bigquery (simple query). \n",
"\n",
"- Basic read of the designated table (friends) created above\n",
"- Execute an aggregate SQL against the table\n",
"\n",
"**NOTE**\n",
"\n",
"It is possible to use **transport.factory.instance** or **transport.instance** they are the same. It allows the maintainers to know that we used a factory design pattern."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading: 100%|\u001b[32m██████████\u001b[0m|\n",
"Downloading: 100%|\u001b[32m██████████\u001b[0m|\n",
" name age\n",
"0 James Bond 55\n",
"1 Steve Rogers 150\n",
"2 Steve Nyemba 44\n",
"--------- STATISTICS ------------\n",
" _counts f0_\n",
"0 3 83.0\n"
]
}
],
"source": [
"\n",
"import transport\n",
"from transport import providers\n",
"import os\n",
"PRIVATE_KEY=os.environ['BQ_KEY']\n",
"pgr = transport.instance(provider=providers.BIGQUERY,dataset='demo',table='friends',private_key=PRIVATE_KEY)\n",
"_df = pgr.read()\n",
"_query = 'SELECT COUNT(*) _counts, AVG(age) from demo.friends'\n",
"_sdf = pgr.read(sql=_query)\n",
"print (_df)\n",
"print ('--------- STATISTICS ------------')\n",
"print (_sdf)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The cell bellow show the content of an auth_file, in this case if the dataset/table in question is not to be shared then you can use auth_file with information associated with the parameters.\n",
"\n",
"**NOTE**:\n",
"\n",
"The auth_file is intended to be **JSON** formatted"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'dataset': 'demo', 'table': 'friends'}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\n",
"{\n",
" \n",
" \"dataset\":\"demo\",\"table\":\"friends\"\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

155
notebooks/mongodb.ipynb Normal file
View File

@ -0,0 +1,155 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Writing to mongodb\n",
"\n",
"Insure mongodb is actually installed on the system, The cell below creates a dataframe that will be stored within mongodb"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2.0.0\n"
]
}
],
"source": [
"#\n",
"# Writing to mongodb database\n",
"#\n",
"import transport\n",
"from transport import providers\n",
"import pandas as pd\n",
"_data = pd.DataFrame({\"name\":['James Bond','Steve Rogers','Steve Nyemba'],'age':[55,150,44]})\n",
"mgw = transport.factory.instance(provider=providers.MONGODB,db='demo',collection='friends',context='write')\n",
"mgw.write(_data)\n",
"print (transport.__version__)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Reading from mongodb\n",
"\n",
"The cell below reads the data that has been written by the cell above and computes the average age within a mongodb pipeline. The code in the background executes an aggregation using **db.runCommand**\n",
"\n",
"- Basic read of the designated collection **find=\\<collection>**\n",
"- Executing an aggregate pipeline against a collection **aggreate=\\<collection>**\n",
"\n",
"**NOTE**\n",
"\n",
"It is possible to use **transport.factory.instance** or **transport.instance** they are the same. It allows the maintainers to know that we used a factory design pattern."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" name age\n",
"0 James Bond 55\n",
"1 Steve Rogers 150\n",
"--------- STATISTICS ------------\n",
" _id _counts _mean\n",
"0 0 2 102.5\n"
]
}
],
"source": [
"\n",
"import transport\n",
"from transport import providers\n",
"mgr = transport.instance(provider=providers.MONGODB,db='foo',collection='friends')\n",
"_df = mgr.read()\n",
"PIPELINE = [{\"$group\":{\"_id\":0,\"_counts\":{\"$sum\":1}, \"_mean\":{\"$avg\":\"$age\"}}}]\n",
"_sdf = mgr.read(aggregate='friends',pipeline=PIPELINE)\n",
"print (_df)\n",
"print ('--------- STATISTICS ------------')\n",
"print (_sdf)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The cell bellow show the content of an auth_file, in this case if the dataset/table in question is not to be shared then you can use auth_file with information associated with the parameters.\n",
"\n",
"**NOTE**:\n",
"\n",
"The auth_file is intended to be **JSON** formatted"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'host': 'klingon.io',\n",
" 'port': 27017,\n",
" 'username': 'me',\n",
" 'password': 'foobar',\n",
" 'db': 'foo',\n",
" 'collection': 'friends',\n",
" 'authSource': '<authdb>',\n",
" 'mechamism': '<SCRAM-SHA-256|MONGODB-CR|SCRAM-SHA-1>'}"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"{\n",
" \"host\":\"klingon.io\",\"port\":27017,\"username\":\"me\",\"password\":\"foobar\",\"db\":\"foo\",\"collection\":\"friends\",\n",
" \"authSource\":\"<authdb>\",\"mechamism\":\"<SCRAM-SHA-256|MONGODB-CR|SCRAM-SHA-1>\"\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

150
notebooks/mysql.ipynb Normal file
View File

@ -0,0 +1,150 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Writing to MySQL\n",
"\n",
"1. Insure MySQL is actually installed on the system, \n",
"2. There is a database called demo created on the said system\n",
"\n",
"The cell below creates a dataframe that will be stored within postgreSQL"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2.0.0\n"
]
}
],
"source": [
"#\n",
"# Writing to PostgreSQL database\n",
"#\n",
"import transport\n",
"from transport import providers\n",
"import pandas as pd\n",
"_data = pd.DataFrame({\"name\":['James Bond','Steve Rogers','Steve Nyemba'],'age':[55,150,44]})\n",
"myw = transport.factory.instance(provider=providers.MYSQL,database='demo',table='friends',context='write',auth_file=\"/home/steve/auth-mysql.json\")\n",
"myw.write(_data,if_exists='replace') #-- default is append\n",
"print (transport.__version__)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Reading from MySQL\n",
"\n",
"The cell below reads the data that has been written by the cell above and computes the average age within a MySQL (simple query). \n",
"\n",
"- Basic read of the designated table (friends) created above\n",
"- Execute an aggregate SQL against the table\n",
"\n",
"**NOTE**\n",
"\n",
"It is possible to use **transport.factory.instance** or **transport.instance** they are the same. It allows the maintainers to know that we used a factory design pattern."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" name age\n",
"0 James Bond 55\n",
"1 Steve Rogers 150\n",
"2 Steve Nyemba 44\n",
"--------- STATISTICS ------------\n",
" _counts avg\n",
"0 3 83.0\n"
]
}
],
"source": [
"\n",
"import transport\n",
"from transport import providers\n",
"myr = transport.instance(provider=providers.POSTGRESQL,database='demo',table='friends',auth_file='/home/steve/auth-mysql.json')\n",
"_df = myr.read()\n",
"_query = 'SELECT COUNT(*) _counts, AVG(age) from friends'\n",
"_sdf = myr.read(sql=_query)\n",
"print (_df)\n",
"print ('--------- STATISTICS ------------')\n",
"print (_sdf)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The cell bellow show the content of an auth_file, in this case if the dataset/table in question is not to be shared then you can use auth_file with information associated with the parameters.\n",
"\n",
"**NOTE**:\n",
"\n",
"The auth_file is intended to be **JSON** formatted"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'host': 'klingon.io',\n",
" 'port': 3306,\n",
" 'username': 'me',\n",
" 'password': 'foobar',\n",
" 'database': 'demo',\n",
" 'table': 'friends'}"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"{\n",
" \"host\":\"klingon.io\",\"port\":3306,\"username\":\"me\",\"password\":\"foobar\",\n",
" \"database\":\"demo\",\"table\":\"friends\"\n",
"}"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

157
notebooks/postgresql.ipynb Normal file
View File

@ -0,0 +1,157 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Writing to PostgreSQL\n",
"\n",
"1. Insure PostgreSQL is actually installed on the system, \n",
"2. There is a database called demo created on the said system\n",
"\n",
"The cell below creates a dataframe that will be stored within postgreSQL"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2.0.0\n"
]
}
],
"source": [
"#\n",
"# Writing to PostgreSQL database\n",
"#\n",
"import transport\n",
"from transport import providers\n",
"import pandas as pd\n",
"_data = pd.DataFrame({\"name\":['James Bond','Steve Rogers','Steve Nyemba'],'age':[55,150,44]})\n",
"pgw = transport.factory.instance(provider=providers.POSTGRESQL,database='demo',table='friends',context='write')\n",
"pgw.write(_data,if_exists='replace') #-- default is append\n",
"print (transport.__version__)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Reading from PostgreSQL\n",
"\n",
"The cell below reads the data that has been written by the cell above and computes the average age within a PostreSQL (simple query). \n",
"\n",
"- Basic read of the designated table (friends) created above\n",
"- Execute an aggregate SQL against the table\n",
"\n",
"**NOTE**\n",
"\n",
"It is possible to use **transport.factory.instance** or **transport.instance** they are the same. It allows the maintainers to know that we used a factory design pattern."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" name age\n",
"0 James Bond 55\n",
"1 Steve Rogers 150\n",
"2 Steve Nyemba 44\n",
"--------- STATISTICS ------------\n",
" _counts avg\n",
"0 3 83.0\n"
]
}
],
"source": [
"\n",
"import transport\n",
"from transport import providers\n",
"pgr = transport.instance(provider=providers.POSTGRESQL,database='demo',table='friends')\n",
"_df = pgr.read()\n",
"_query = 'SELECT COUNT(*) _counts, AVG(age) from friends'\n",
"_sdf = pgr.read(sql=_query)\n",
"print (_df)\n",
"print ('--------- STATISTICS ------------')\n",
"print (_sdf)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The cell bellow show the content of an auth_file, in this case if the dataset/table in question is not to be shared then you can use auth_file with information associated with the parameters.\n",
"\n",
"**NOTE**:\n",
"\n",
"The auth_file is intended to be **JSON** formatted"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'host': 'klingon.io',\n",
" 'port': 5432,\n",
" 'username': 'me',\n",
" 'password': 'foobar',\n",
" 'database': 'demo',\n",
" 'table': 'friends'}"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"{\n",
" \"host\":\"klingon.io\",\"port\":5432,\"username\":\"me\",\"password\":\"foobar\",\n",
" \"database\":\"demo\",\"table\":\"friends\"\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

139
notebooks/sqlite.ipynb Normal file
View File

@ -0,0 +1,139 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Writing to SQLite3+\n",
"\n",
"The requirements to get started are minimal (actually none). The cell below creates a dataframe that will be stored within SQLite 3+"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2.0.0\n"
]
}
],
"source": [
"#\n",
"# Writing to PostgreSQL database\n",
"#\n",
"import transport\n",
"from transport import providers\n",
"import pandas as pd\n",
"_data = pd.DataFrame({\"name\":['James Bond','Steve Rogers','Steve Nyemba'],'age':[55,150,44]})\n",
"sqw = transport.factory.instance(provider=providers.SQLITE,database='/home/steve/demo.db3',table='friends',context='write')\n",
"sqw.write(_data,if_exists='replace') #-- default is append\n",
"print (transport.__version__)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Reading from SQLite3+\n",
"\n",
"The cell below reads the data that has been written by the cell above and computes the average age within a PostreSQL (simple query). \n",
"\n",
"- Basic read of the designated table (friends) created above\n",
"- Execute an aggregate SQL against the table\n",
"\n",
"**NOTE**\n",
"\n",
"It is possible to use **transport.factory.instance** or **transport.instance** they are the same. It allows the maintainers to know that we used a factory design pattern."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" name age\n",
"0 James Bond 55\n",
"1 Steve Rogers 150\n",
"2 Steve Nyemba 44\n",
"--------- STATISTICS ------------\n",
" _counts AVG(age)\n",
"0 3 83.0\n"
]
}
],
"source": [
"\n",
"import transport\n",
"from transport import providers\n",
"pgr = transport.instance(provider=providers.SQLITE,database='/home/steve/demo.db3',table='friends')\n",
"_df = pgr.read()\n",
"_query = 'SELECT COUNT(*) _counts, AVG(age) from friends'\n",
"_sdf = pgr.read(sql=_query)\n",
"print (_df)\n",
"print ('--------- STATISTICS ------------')\n",
"print (_sdf)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The cell bellow show the content of an auth_file, in this case if the dataset/table in question is not to be shared then you can use auth_file with information associated with the parameters.\n",
"\n",
"**NOTE**:\n",
"\n",
"The auth_file is intended to be **JSON** formatted. This is an overkill for SQLite ;-)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"\n",
"{\n",
" \"provider\":\"sqlite\",\n",
" \"database\":\"/home/steve/demo.db3\",\"table\":\"friends\"\n",
"}\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}