commit
b30dc0f023
|
@ -18,6 +18,11 @@ Within the virtual environment perform the following :
|
|||
|
||||
pip install git+https://github.com/lnyemba/data-transport.git
|
||||
|
||||
## Features
|
||||
|
||||
- read/write from over a dozen databases
|
||||
- run ETL jobs seamlessly
|
||||
- scales and integrates into shared environments like apache zeppelin; jupyterhub; SageMaker; ...
|
||||
|
||||
## What's new
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
__app_name__ = 'data-transport'
|
||||
__author__ = 'The Phi Technology'
|
||||
__version__= '2.2.0'
|
||||
__version__= '2.2.1'
|
||||
__email__ = "info@the-phi.com"
|
||||
__license__=f"""
|
||||
Copyright 2010 - 2024, Steve L. Nyemba
|
||||
|
|
2
setup.py
2
setup.py
|
@ -19,7 +19,7 @@ args = {
|
|||
|
||||
"packages": find_packages(include=['info','transport', 'transport.*'])}
|
||||
args["keywords"]=['mongodb','duckdb','couchdb','rabbitmq','file','read','write','s3','sqlite']
|
||||
args["install_requires"] = ['pyncclient','duckdb-engine','pymongo','sqlalchemy','pandas','typer','pandas-gbq','numpy','cloudant','pika','nzpy','boto3','boto','pyarrow','google-cloud-bigquery','google-cloud-bigquery-storage','flask-session','smart_open','botocore','psycopg2-binary','mysql-connector-python','numpy','pymssql']
|
||||
args["install_requires"] = ['pyncclient','duckdb-engine','pymongo','sqlalchemy','pandas','typer','pandas-gbq','numpy','cloudant','pika','nzpy','termcolor','boto3','boto','pyarrow','google-cloud-bigquery','google-cloud-bigquery-storage','flask-session','smart_open','botocore','psycopg2-binary','mysql-connector-python','numpy','pymssql']
|
||||
args["url"] = "https://healthcareio.the-phi.com/git/code/transport.git"
|
||||
args['scripts'] = ['bin/transport']
|
||||
# if sys.version_info[0] == 2 :
|
||||
|
|
|
@ -134,7 +134,7 @@ class get :
|
|||
"""
|
||||
@staticmethod
|
||||
def reader (**_args):
|
||||
if not _args or 'provider' not in _args:
|
||||
if not _args or ('provider' not in _args and 'label' not in _args):
|
||||
_args['label'] = 'default'
|
||||
_args['context'] = 'read'
|
||||
return instance(**_args)
|
||||
|
@ -143,7 +143,7 @@ class get :
|
|||
"""
|
||||
This function is a wrapper that will return a writer to a database. It disambiguates the interface
|
||||
"""
|
||||
if not _args :
|
||||
if not _args or ('provider' not in _args and 'label' not in _args):
|
||||
_args['label'] = 'default'
|
||||
_args['context'] = 'write'
|
||||
return instance(**_args)
|
||||
|
|
|
@ -3,10 +3,13 @@ Data Transport - 1.0
|
|||
Steve L. Nyemba, The Phi Technology LLC
|
||||
|
||||
This file is a wrapper around s3 bucket provided by AWS for reading and writing content
|
||||
TODO:
|
||||
- Address limitations that will properly read csv if it is stored with content type text/csv
|
||||
"""
|
||||
|
||||
from datetime import datetime
|
||||
import boto
|
||||
from boto.s3.connection import S3Connection, OrdinaryCallingFormat
|
||||
import boto3
|
||||
# from boto.s3.connection import S3Connection, OrdinaryCallingFormat
|
||||
import numpy as np
|
||||
import botocore
|
||||
from smart_open import smart_open
|
||||
|
@ -14,6 +17,7 @@ import sys
|
|||
|
||||
import json
|
||||
from io import StringIO
|
||||
import pandas as pd
|
||||
import json
|
||||
|
||||
class s3 :
|
||||
|
@ -29,46 +33,37 @@ class s3 :
|
|||
@param filter filename or filtering elements
|
||||
"""
|
||||
try:
|
||||
self.s3 = S3Connection(args['access_key'],args['secret_key'],calling_format=OrdinaryCallingFormat())
|
||||
self.bucket = self.s3.get_bucket(args['bucket'].strip(),validate=False) if 'bucket' in args else None
|
||||
# self.path = args['path']
|
||||
self.filter = args['filter'] if 'filter' in args else None
|
||||
self.filename = args['file'] if 'file' in args else None
|
||||
self.bucket_name = args['bucket'] if 'bucket' in args else None
|
||||
|
||||
self._client = boto3.client('s3',aws_access_key_id=args['access_key'],aws_secret_access_key=args['secret_key'],region_name=args['region'])
|
||||
self._bucket_name = args['bucket']
|
||||
self._file_name = args['file']
|
||||
self._region = args['region']
|
||||
except Exception as e :
|
||||
self.s3 = None
|
||||
self.bucket = None
|
||||
print (e)
|
||||
pass
|
||||
def has(self,**_args):
|
||||
_found = None
|
||||
try:
|
||||
if 'file' in _args and 'bucket' in _args:
|
||||
_found = self.meta(**_args)
|
||||
elif 'bucket' in _args and not 'file' in _args:
|
||||
_found = self._client.list_objects(Bucket=_args['bucket'])
|
||||
elif 'file' in _args and not 'bucket' in _args :
|
||||
_found = self.meta(bucket=self._bucket_name,file = _args['file'])
|
||||
except Exception as e:
|
||||
_found = None
|
||||
pass
|
||||
return type(_found) == dict
|
||||
def meta(self,**args):
|
||||
"""
|
||||
This function will return information either about the file in a given bucket
|
||||
:name name of the bucket
|
||||
"""
|
||||
info = self.list(**args)
|
||||
[item.open() for item in info]
|
||||
return [{"name":item.name,"size":item.size} for item in info]
|
||||
def list(self,**args):
|
||||
"""
|
||||
This function will list the content of a bucket, the bucket must be provided by the name
|
||||
:name name of the bucket
|
||||
"""
|
||||
return list(self.s3.get_bucket(args['name']).list())
|
||||
|
||||
|
||||
def buckets(self):
|
||||
#
|
||||
# This function will return all buckets, not sure why but it should be used cautiously
|
||||
# based on why the s3 infrastructure is used
|
||||
#
|
||||
return [item.name for item in self.s3.get_all_buckets()]
|
||||
|
||||
# def buckets(self):
|
||||
pass
|
||||
# """
|
||||
# This function is a wrapper around the bucket list of buckets for s3
|
||||
# """
|
||||
# return self.s3.get_all_buckets()
|
||||
|
||||
_bucket = self._bucket_name if 'bucket' not in args else args['bucket']
|
||||
_file = self._file_name if 'file' not in args else args['file']
|
||||
_data = self._client.get_object(Bucket=_bucket,Key=_file)
|
||||
return _data['ResponseMetadata']
|
||||
def close(self):
|
||||
self._client.close()
|
||||
|
||||
class Reader(s3) :
|
||||
"""
|
||||
|
@ -77,51 +72,66 @@ class Reader(s3) :
|
|||
- stream content if file is Not None
|
||||
@TODO: support read from all buckets, think about it
|
||||
"""
|
||||
def __init__(self,**args) :
|
||||
s3.__init__(self,**args)
|
||||
def files(self):
|
||||
r = []
|
||||
try:
|
||||
return [item.name for item in self.bucket if item.size > 0]
|
||||
except Exception as e:
|
||||
pass
|
||||
return r
|
||||
def stream(self,limit=-1):
|
||||
def __init__(self,**_args) :
|
||||
super().__init__(**_args)
|
||||
|
||||
def _stream(self,**_args):
|
||||
"""
|
||||
At this point we should stream a file from a given bucket
|
||||
"""
|
||||
key = self.bucket.get_key(self.filename.strip())
|
||||
if key is None :
|
||||
yield None
|
||||
_object = self._client.get_object(Bucket=_args['bucket'],Key=_args['file'])
|
||||
_stream = None
|
||||
try:
|
||||
_stream = _object['Body'].read()
|
||||
except Exception as e:
|
||||
pass
|
||||
if not _stream :
|
||||
return None
|
||||
if _object['ContentType'] in ['text/csv'] :
|
||||
return pd.read_csv(StringIO(str(_stream).replace("\\n","\n").replace("\\r","").replace("\'","")))
|
||||
else:
|
||||
count = 0
|
||||
with smart_open(key) as remote_file:
|
||||
for line in remote_file:
|
||||
if count == limit and limit > 0 :
|
||||
break
|
||||
yield line
|
||||
count += 1
|
||||
return _stream
|
||||
|
||||
def read(self,**args) :
|
||||
if self.filename is None :
|
||||
#
|
||||
# returning the list of files because no one file was specified.
|
||||
return self.files()
|
||||
else:
|
||||
limit = args['size'] if 'size' in args else -1
|
||||
return self.stream(limit)
|
||||
|
||||
_name = self._file_name if 'file' not in args else args['file']
|
||||
_bucket = args['bucket'] if 'bucket' in args else self._bucket_name
|
||||
return self._stream(bucket=_bucket,file=_name)
|
||||
|
||||
|
||||
class Writer(s3) :
|
||||
|
||||
def __init__(self,**args) :
|
||||
s3.__init__(self,**args)
|
||||
def mkdir(self,name):
|
||||
"""
|
||||
This function will create a folder in a bucket
|
||||
|
||||
"""
|
||||
def __init__(self,**_args) :
|
||||
super().__init__(**_args)
|
||||
#
|
||||
#
|
||||
if not self.has(bucket=self._bucket_name) :
|
||||
self.make_bucket(self._bucket_name)
|
||||
def make_bucket(self,bucket_name):
|
||||
"""
|
||||
This function will create a folder in a bucket,It is best that the bucket is organized as a namespace
|
||||
:name name of the folder
|
||||
"""
|
||||
self.s3.put_object(Bucket=self.bucket_name,key=(name+'/'))
|
||||
def write(self,content):
|
||||
file = StringIO(content.decode("utf8"))
|
||||
self.s3.upload_fileobj(file,self.bucket_name,self.filename)
|
||||
|
||||
self._client.create_bucket(Bucket=bucket_name,CreateBucketConfiguration={'LocationConstraint': self._region})
|
||||
def write(self,_data,**_args):
|
||||
"""
|
||||
This function will write the data to the s3 bucket, files can be either csv, or json formatted files
|
||||
"""
|
||||
content = 'text/plain'
|
||||
if type(_data) == pd.DataFrame :
|
||||
_stream = _data.to_csv(index=False)
|
||||
content = 'text/csv'
|
||||
elif type(_data) == dict :
|
||||
_stream = json.dumps(_data)
|
||||
content = 'application/json'
|
||||
else:
|
||||
_stream = _data
|
||||
file = StringIO(_stream)
|
||||
bucket = self._bucket_name if 'bucket' not in _args else _args['bucket']
|
||||
file_name = self._file_name if 'file' not in _args else _args['file']
|
||||
self._client.put_object(Bucket=bucket, Key = file_name, Body=_stream,ContentType=content)
|
||||
pass
|
||||
|
||||
|
|
Loading…
Reference in New Issue