parser/healthcareio/server/proxy.py

169 lines
6.7 KiB
Python
Raw Permalink Normal View History

2020-12-11 12:57:11 +00:00
"""
This file serves as proxy to healthcare-io, it will be embedded into the API
"""
import os
import transport
import numpy as np
2020-12-11 18:20:06 +00:00
from healthcareio import x12
2020-12-11 12:57:11 +00:00
import pandas as pd
import smart
2020-12-11 18:20:06 +00:00
from healthcareio.analytics import Apex
2020-12-11 12:57:11 +00:00
import time
class get :
PROCS = []
PATH = os.sep.join([os.environ['HOME'],'.healthcareio','config.json'])
@staticmethod
def resume (files,args):
"""
This function will determine the appropriate files to be processed by performing a simple complementary set operation against the logs
@TODO: Support data-stores other than mongodb
:param files list of files within a folder
:param _args configuration
"""
_args = args['store'].copy()
if 'mongo' in _args['type'] :
_args['type'] = 'mongo.MongoReader'
reader = transport.factory.instance(**_args)
_files = []
try:
pipeline = [{"$match":{"completed":{"$eq":True}}},{"$group":{"_id":"$name"}},{"$project":{"name":"$_id","_id":0}}]
_args = {"aggregate":"logs","cursor":{},"allowDiskUse":True,"pipeline":pipeline}
_files = reader.read(mongo = _args)
_files = [item['name'] for item in _files]
except Exception as e :
pass
print ( [len(list(set(files) - set(_files))),' files to be processed'])
2020-12-11 12:57:11 +00:00
return list(set(files) - set(_files))
@staticmethod
def processes(_args):
2022-10-12 14:59:35 +00:00
APP_NAME ='healthcare-io'
_info = smart.top.read(name=APP_NAME) #pd.DataFrame(smart.top.read(name='healthcare-io'))[['name','cpu','mem']]
2020-12-11 12:57:11 +00:00
if _info.shape[0] == 0 :
2022-10-12 14:59:35 +00:00
_info = pd.DataFrame({"name":[APP_NAME],"cpu":[0],"mem":[0]})
2020-12-11 12:57:11 +00:00
# _info = pd.DataFrame(_info.groupby(['name']).sum())
# _info['name'] = ['healthcare-io.py']
m = {'cpu':'CPU','mem':'RAM','name':'name'}
2022-10-12 14:59:35 +00:00
_info = _info.rename(columns=m)
# _info.columns = [m[name] for name in _info.columns.tolist() if name in m]
2020-12-11 12:57:11 +00:00
_info.index = np.arange(_info.shape[0])
charts = []
for label in ['CPU','RAM'] :
value = _info[label].sum()
df = pd.DataFrame({"name":[label],label:[value]})
charts.append (
Apex.apply(
{"data":df, "chart":{"type":"radial","axis":{"x":label,"y":"name"}}}
)['apex']
)
2022-10-12 14:59:35 +00:00
return {"process":{"chart":charts,"counts":_info.shape[0]}}
2020-12-11 12:57:11 +00:00
@staticmethod
def files (_args):
2022-10-12 14:59:35 +00:00
folder = _args['args']['folder']
_info = smart.folder.read(path=folder)
2020-12-11 12:57:11 +00:00
N = _info.files.tolist()[0]
2022-10-12 14:59:35 +00:00
store_args = _args['store'].copy()
store_args['context'] = 'read'
# if 'mongo' in _args['store']['type'] :
if _args['store']['provider'] in ['mongo', 'mongodb']:
# store_args = dict(_args['store'].copy(),**{"type":"mongo.MongoReader"})
2020-12-11 12:57:11 +00:00
# reader = transport.factory.instance(**_args)
pipeline = [{"$group":{"_id":"$name","count":{"$sum":{"$cond":[{"$eq":["$completed",True]},1,0]}} }},{"$group":{"_id":None,"count":{"$sum":"$count"}}},{"$project":{"_id":0,"status":"completed","count":1}}]
query = {"mongo":{"aggregate":"logs","allowDiskUse":True,"cursor":{},"pipeline":pipeline}}
# _info = pd.DataFrame(reader.read(mongo={"aggregate":"logs","allowDiskUse":True,"cursor":{},"pipeline":pipeline}))
pipeline = [{"$group":{"_id":"$parse","claims":{"$addToSet":"$name"}}},{"$project":{"_id":0,"type":"$_id","count":{"$size":"$claims"}}}]
_query = {"mongo":{"aggregate":"logs","cursor":{},"allowDiskUse":True,"pipeline":pipeline}} #-- distribution claims/remits
else:
2022-10-12 14:59:35 +00:00
# store_args = dict(_args['store'].copy(),**{"type":"disk.SQLiteReader"})
# store_args['args']['table'] = 'logs'
store_args['table'] = 'logs'
2020-12-11 12:57:11 +00:00
query= {"sql":"select count(distinct json_extract(data,'$.name')) as count, 'completed' status from logs where json_extract(data,'$.completed') = true"}
_query={"sql":"select json_extract(data,'$.parse') as type,count(distinct json_extract(data,'$.name')) as count from logs group by type"} #-- distribution claim/remits
reader = transport.factory.instance(**store_args)
_info = pd.DataFrame(reader.read(**query))
2022-10-12 14:59:35 +00:00
2020-12-11 12:57:11 +00:00
if not _info.shape[0] :
_info = pd.DataFrame({"status":["completed"],"count":[0]})
_info['count'] = np.round( (_info['count'] * 100 )/N,2)
charts = [Apex.apply({"data":_info,"chart":{"type":"radial","axis":{"y":"status","x":"count"}}})['apex']]
#
# Let us classify the files now i.e claims / remits
#
r = pd.DataFrame(reader.read(**_query)) #-- distribution claims/remits
r = Apex.apply({"chart":{"type":"donut","axis":{"x":"count","y":"type"}},"data":r})['apex']
r['chart']['height'] = '100%'
r['legend']['position'] = 'bottom'
charts += [r]
return {"files":{"counts":N,"chart":charts}}
pass
#
# Process handling ....
def run (_args) :
"""
This function will run the jobs and insure as processes (as daemons).
:param _args system configuration
"""
FILES = []
BATCH = int(_args['args']['batch']) #-- number of processes (poorly named variable)
for root,_dir,f in os.walk(_args['args']['folder']) :
if f :
FILES += [os.sep.join([root,name]) for name in f]
FILES = get.resume(FILES,_args)
FILES = np.array_split(FILES,BATCH)
for FILE_GROUP in FILES :
FILE_GROUP = FILE_GROUP.tolist()
# logger.write({"process":index,"parse":_args['parse'],"file_count":len(row)})
# proc = Process(target=apply,args=(row,info['store'],_info,))
parser = x12.Parser(get.PATH) #os.sep.join([PATH,'config.json']))
parser.set.files(FILE_GROUP)
parser.daemon = True
parser.start()
get.PROCS.append(parser)
time.sleep(3)
#
# @TODO:consider submitting an update to clients via publish/subscribe framework
#
return get.PROCS
def stop(_args):
for job in get.PROCS :
if job.is_alive() :
job.terminate()
get.PROCS = []
#
# @TODO: consider submitting an update to clients via publish/subscribe framework
pass
def write(src_args,dest_args,files) :
#
# @TODO: Support for SQLite
pass
def publish (src_args,dest_args,folder="/data"):
FILES = []
for root,_dir,f in os.walk(folder) :
if f :
FILES += [os.sep.join([root,name]) for name in f]
#
# @TODO: Add support for SQLite ....
FILES = np.array_split(FILES,4)