171 lines
6.8 KiB
Python
171 lines
6.8 KiB
Python
|
"""
|
||
|
This file serves as proxy to healthcare-io, it will be embedded into the API
|
||
|
"""
|
||
|
import os
|
||
|
import transport
|
||
|
import numpy as np
|
||
|
import x12
|
||
|
import pandas as pd
|
||
|
import smart
|
||
|
from analytics import Apex
|
||
|
import time
|
||
|
class get :
|
||
|
PROCS = []
|
||
|
PATH = os.sep.join([os.environ['HOME'],'.healthcareio','config.json'])
|
||
|
@staticmethod
|
||
|
def resume (files,args):
|
||
|
"""
|
||
|
This function will determine the appropriate files to be processed by performing a simple complementary set operation against the logs
|
||
|
@TODO: Support data-stores other than mongodb
|
||
|
:param files list of files within a folder
|
||
|
:param _args configuration
|
||
|
"""
|
||
|
_args = args['store'].copy()
|
||
|
if 'mongo' in _args['type'] :
|
||
|
_args['type'] = 'mongo.MongoReader'
|
||
|
reader = transport.factory.instance(**_args)
|
||
|
_files = []
|
||
|
try:
|
||
|
pipeline = [{"$match":{"completed":{"$eq":True}}},{"$group":{"_id":"$name"}},{"$project":{"name":"$_id","_id":0}}]
|
||
|
_args = {"aggregate":"logs","cursor":{},"allowDiskUse":True,"pipeline":pipeline}
|
||
|
_files = reader.read(mongo = _args)
|
||
|
_files = [item['name'] for item in _files]
|
||
|
except Exception as e :
|
||
|
pass
|
||
|
print (["found ",len(files),"\tProcessed ",len(_files)])
|
||
|
return list(set(files) - set(_files))
|
||
|
|
||
|
@staticmethod
|
||
|
def processes(_args):
|
||
|
_info = pd.DataFrame(smart.top.read(name='healthcare-io.py'))[['name','cpu','mem']]
|
||
|
|
||
|
if _info.shape[0] == 0 :
|
||
|
_info = pd.DataFrame({"name":["healthcare-io.py"],"cpu":[0],"mem":[0]})
|
||
|
# _info = pd.DataFrame(_info.groupby(['name']).sum())
|
||
|
# _info['name'] = ['healthcare-io.py']
|
||
|
m = {'cpu':'CPU','mem':'RAM','name':'name'}
|
||
|
_info.columns = [m[name] for name in _info.columns.tolist()]
|
||
|
_info.index = np.arange(_info.shape[0])
|
||
|
|
||
|
charts = []
|
||
|
for label in ['CPU','RAM'] :
|
||
|
value = _info[label].sum()
|
||
|
df = pd.DataFrame({"name":[label],label:[value]})
|
||
|
charts.append (
|
||
|
Apex.apply(
|
||
|
{"data":df, "chart":{"type":"radial","axis":{"x":label,"y":"name"}}}
|
||
|
)['apex']
|
||
|
)
|
||
|
#
|
||
|
# This will update the counts for the processes, upon subsequent requests so as to show the change
|
||
|
#
|
||
|
N = 0
|
||
|
lprocs = []
|
||
|
for proc in get.PROCS :
|
||
|
if proc.is_alive() :
|
||
|
lprocs.append(proc)
|
||
|
N = len(lprocs)
|
||
|
get.PROCS = lprocs
|
||
|
return {"process":{"chart":charts,"counts":N}}
|
||
|
@staticmethod
|
||
|
def files (_args):
|
||
|
_info = smart.folder.read(path='/data')
|
||
|
N = _info.files.tolist()[0]
|
||
|
if 'mongo' in _args['store']['type'] :
|
||
|
store_args = dict(_args['store'].copy(),**{"type":"mongo.MongoReader"})
|
||
|
# reader = transport.factory.instance(**_args)
|
||
|
|
||
|
pipeline = [{"$group":{"_id":"$name","count":{"$sum":{"$cond":[{"$eq":["$completed",True]},1,0]}} }},{"$group":{"_id":None,"count":{"$sum":"$count"}}},{"$project":{"_id":0,"status":"completed","count":1}}]
|
||
|
query = {"mongo":{"aggregate":"logs","allowDiskUse":True,"cursor":{},"pipeline":pipeline}}
|
||
|
# _info = pd.DataFrame(reader.read(mongo={"aggregate":"logs","allowDiskUse":True,"cursor":{},"pipeline":pipeline}))
|
||
|
pipeline = [{"$group":{"_id":"$parse","claims":{"$addToSet":"$name"}}},{"$project":{"_id":0,"type":"$_id","count":{"$size":"$claims"}}}]
|
||
|
_query = {"mongo":{"aggregate":"logs","cursor":{},"allowDiskUse":True,"pipeline":pipeline}} #-- distribution claims/remits
|
||
|
|
||
|
|
||
|
else:
|
||
|
store_args = dict(_args['store'].copy(),**{"type":"disk.SQLiteReader"})
|
||
|
store_args['args']['table'] = 'logs'
|
||
|
query= {"sql":"select count(distinct json_extract(data,'$.name')) as count, 'completed' status from logs where json_extract(data,'$.completed') = true"}
|
||
|
_query={"sql":"select json_extract(data,'$.parse') as type,count(distinct json_extract(data,'$.name')) as count from logs group by type"} #-- distribution claim/remits
|
||
|
reader = transport.factory.instance(**store_args)
|
||
|
_info = pd.DataFrame(reader.read(**query))
|
||
|
if not _info.shape[0] :
|
||
|
_info = pd.DataFrame({"status":["completed"],"count":[0]})
|
||
|
_info['count'] = np.round( (_info['count'] * 100 )/N,2)
|
||
|
|
||
|
charts = [Apex.apply({"data":_info,"chart":{"type":"radial","axis":{"y":"status","x":"count"}}})['apex']]
|
||
|
#
|
||
|
# Let us classify the files now i.e claims / remits
|
||
|
#
|
||
|
|
||
|
|
||
|
# pipeline = [{"$group":{"_id":"$parse","claims":{"$addToSet":"$name"}}},{"$project":{"_id":0,"type":"$_id","count":{"$size":"$claims"}}}]
|
||
|
# _args = {"aggregate":"logs","cursor":{},"allowDiskUse":True,"pipeline":pipeline}
|
||
|
# r = pd.DataFrame(reader.read(mongo=_args))
|
||
|
r = pd.DataFrame(reader.read(**_query)) #-- distribution claims/remits
|
||
|
r = Apex.apply({"chart":{"type":"donut","axis":{"x":"count","y":"type"}},"data":r})['apex']
|
||
|
r['chart']['height'] = '100%'
|
||
|
r['legend']['position'] = 'bottom'
|
||
|
|
||
|
charts += [r]
|
||
|
|
||
|
|
||
|
return {"files":{"counts":N,"chart":charts}}
|
||
|
|
||
|
pass
|
||
|
#
|
||
|
# Process handling ....
|
||
|
|
||
|
|
||
|
def run (_args) :
|
||
|
"""
|
||
|
This function will run the jobs and insure as processes (as daemons).
|
||
|
:param _args system configuration
|
||
|
"""
|
||
|
FILES = []
|
||
|
BATCH = int(_args['args']['batch']) #-- number of processes (poorly named variable)
|
||
|
|
||
|
for root,_dir,f in os.walk(_args['args']['folder']) :
|
||
|
if f :
|
||
|
FILES += [os.sep.join([root,name]) for name in f]
|
||
|
FILES = get.resume(FILES,_args)
|
||
|
FILES = np.array_split(FILES,BATCH)
|
||
|
|
||
|
for FILE_GROUP in FILES :
|
||
|
|
||
|
FILE_GROUP = FILE_GROUP.tolist()
|
||
|
# logger.write({"process":index,"parse":_args['parse'],"file_count":len(row)})
|
||
|
# proc = Process(target=apply,args=(row,info['store'],_info,))
|
||
|
parser = x12.Parser(get.PATH) #os.sep.join([PATH,'config.json']))
|
||
|
parser.set.files(FILE_GROUP)
|
||
|
parser.daemon = True
|
||
|
parser.start()
|
||
|
get.PROCS.append(parser)
|
||
|
time.sleep(3)
|
||
|
#
|
||
|
# @TODO:consider submitting an update to clients via publish/subscribe framework
|
||
|
#
|
||
|
return get.PROCS
|
||
|
def stop(_args):
|
||
|
for job in get.PROCS :
|
||
|
if job.is_alive() :
|
||
|
job.terminate()
|
||
|
get.PROCS = []
|
||
|
#
|
||
|
# @TODO: consider submitting an update to clients via publish/subscribe framework
|
||
|
pass
|
||
|
def write(src_args,dest_args,files) :
|
||
|
#
|
||
|
# @TODO: Support for SQLite
|
||
|
pass
|
||
|
def publish (src_args,dest_args,folder="/data"):
|
||
|
FILES = []
|
||
|
for root,_dir,f in os.walk(folder) :
|
||
|
if f :
|
||
|
FILES += [os.sep.join([root,name]) for name in f]
|
||
|
#
|
||
|
# @TODO: Add support for SQLite ....
|
||
|
|
||
|
FILES = np.array_split(FILES,4)
|
||
|
|