diff --git a/notebooks/risk.ipynb b/notebooks/risk.ipynb
index fc86de5..1109529 100644
--- a/notebooks/risk.ipynb
+++ b/notebooks/risk.ipynb
@@ -2,15 +2,29 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 66,
+ "execution_count": 1,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dev-deid-600@aou-res-deid-vumc-test.iam.gserviceaccount.com df0ac049-d5b6-416f-ab3c-6321eda919d6 2018-09-25 08:18:34.829000+00:00 DONE\n"
+ ]
+ }
+ ],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"from google.cloud import bigquery as bq\n",
"\n",
- "client = bq.Client.from_service_account_json('/home/steve/dev/google-cloud-sdk/accounts/vumc-test.json')"
+ "client = bq.Client.from_service_account_json('/home/steve/dev/google-cloud-sdk/accounts/vumc-test.json')\n",
+ "# pd.read_gbq(query=\"select * from raw.observation limit 10\",private_key='/home/steve/dev/google-cloud-sdk/accounts/vumc-test.json')\n",
+ "jobs = client.list_jobs()\n",
+ "for job in jobs :\n",
+ "# print dir(job)\n",
+ " print job.user_email,job.job_id,job.started, job.state\n",
+ " break"
]
},
{
@@ -25,7 +39,7 @@
},
{
"cell_type": "code",
- "execution_count": 181,
+ "execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
@@ -68,7 +82,7 @@
" else:\n",
" x_ = args['xi']\n",
" for xi in x_ :\n",
- " fields += (['.'.join([xi['name'],name]) for name in xi['fields'] if name != args['join']])\n",
+ " fields += (['.'.join([xi['name'], name]) for name in xi['fields'] if name != args['join']])\n",
" return fields\n",
"def generate_sql(**args):\n",
" \"\"\"\n",
@@ -97,7 +111,27 @@
" tmp.append(ON_SQL)\n",
" INNER_JOINS += [JOIN_SQL + \" AND \".join(tmp)]\n",
" return SQL + \" \".join(INNER_JOINS)\n",
- " \n",
+ "def get_final_sql(**args):\n",
+ " xo = args['xo']\n",
+ " xi = args['xi']\n",
+ " join=args['join']\n",
+ " prefix = args['prefix'] if 'prefix' in args else ''\n",
+ " fields = get_fields (xo=xo,xi=xi,join=join)\n",
+ " k = len(fields)\n",
+ " n = np.random.randint(2,k) #-- number of fields to select\n",
+ " i = np.random.randint(0,k,size=n)\n",
+ " fields = [name for name in fields if fields.index(name) in i]\n",
+ " base_sql = generate_sql(xo=xo,xi=xi,prefix)\n",
+ " SQL = \"\"\"\n",
+ " SELECT AVERAGE(count),size,n as selected_features,k as total_features\n",
+ " FROM(\n",
+ " SELECT COUNT(*) as count,count(:join) as pop,sum(:n) as N,sum(:k) as k,:fields\n",
+ " FROM (:sql)\n",
+ " GROUP BY :fields\n",
+ " ) \n",
+ " order by 1\n",
+ " \n",
+ " \"\"\".replace(\":sql\",base_sql)\n",
"# sql = \"SELECT :fields FROM :xo.name INNER JOIN :xi.name ON :xi.name.:xi.y = :xo.y \"\n",
"# fields = \",\".join(get_fields(xo=xi,xi=xi,join=xi['y']))\n",
" \n",
@@ -111,24 +145,39 @@
},
{
"cell_type": "code",
- "execution_count": 183,
+ "execution_count": 33,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "xo = {\"name\":\"person\",\"fields\":['person_id','date_of_birth','race','value_as_number']}\n",
+ "xi = [{\"name\":\"measurement\",\"fields\":['person_id','value_as_number','value_source_value']}] #,{\"name\":\"observation\",\"fields\":[\"person_id\",\"value_as_string\",\"observation_source_value\"]}]\n",
+ "# generate_sql(xo=xo,xi=xi,join=\"person_id\",prefix='raw')\n",
+ "fields = get_fields(xo=xo,xi=xi,join='person_id')\n",
+ "ofields = list(fields)\n",
+ "k = len(fields)\n",
+ "n = np.random.randint(2,k) #-- number of fields to select\n",
+ "i = np.random.randint(0,k,size=n)\n",
+ "fields = [name for name in fields if fields.index(name) in i]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "'SELECT :fields FROM raw.person INNER JOIN raw.measurement ON measurement.person_id = person.person_id'"
+ "['person.race', 'person.value_as_number', 'measurement.value_source_value']"
]
},
- "execution_count": 183,
+ "execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "xo = {\"name\":\"person\",\"fields\":['person_id','date_of_birth','race']}\n",
- "xi = [{\"name\":\"measurement\",\"fields\":['person_id','value_as_number','value_source_value']}] #,{\"name\":\"observation\",\"fields\":[\"person_id\",\"value_as_string\",\"observation_source_value\"]}]\n",
- "generate_sql(xo=xo,xi=xi,join=\"person_id\",prefix='raw')"
+ "fields\n"
]
},
{
@@ -179,69 +228,16 @@
},
{
"cell_type": "code",
- "execution_count": 111,
+ "execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "[u'condition_occurrence.condition_occurrence_id',\n",
- " u'condition_occurrence.person_id',\n",
- " u'condition_occurrence.condition_concept_id',\n",
- " u'condition_occurrence.condition_start_date',\n",
- " u'condition_occurrence.condition_start_datetime',\n",
- " u'condition_occurrence.condition_end_date',\n",
- " u'condition_occurrence.condition_end_datetime',\n",
- " u'condition_occurrence.condition_type_concept_id',\n",
- " u'condition_occurrence.stop_reason',\n",
- " u'condition_occurrence.provider_id',\n",
- " u'condition_occurrence.visit_occurrence_id',\n",
- " u'condition_occurrence.condition_source_value',\n",
- " u'condition_occurrence.condition_source_concept_id',\n",
- " u'death.death_date',\n",
- " u'death.death_datetime',\n",
- " u'death.death_type_concept_id',\n",
- " u'death.cause_concept_id',\n",
- " u'death.cause_source_value',\n",
- " u'death.cause_source_concept_id',\n",
- " u'device_exposure.device_exposure_id',\n",
- " u'device_exposure.device_concept_id',\n",
- " u'device_exposure.device_exposure_start_date',\n",
- " u'device_exposure.device_exposure_start_datetime',\n",
- " u'device_exposure.device_exposure_end_date',\n",
- " u'device_exposure.device_exposure_end_datetime',\n",
- " u'device_exposure.device_type_concept_id',\n",
- " u'device_exposure.unique_device_id',\n",
- " u'device_exposure.quantity',\n",
- " u'device_exposure.provider_id',\n",
- " u'device_exposure.visit_occurrence_id',\n",
- " u'device_exposure.device_source_value',\n",
- " u'device_exposure.device_source_concept_id',\n",
- " u'drug_exposure.drug_exposure_id',\n",
- " u'drug_exposure.drug_concept_id',\n",
- " u'drug_exposure.drug_exposure_start_date',\n",
- " u'drug_exposure.drug_exposure_start_datetime',\n",
- " u'drug_exposure.drug_exposure_end_date',\n",
- " u'drug_exposure.drug_exposure_end_datetime',\n",
- " u'drug_exposure.drug_type_concept_id',\n",
- " u'drug_exposure.stop_reason',\n",
- " u'drug_exposure.refills',\n",
- " u'drug_exposure.quantity',\n",
- " u'drug_exposure.days_supply',\n",
- " u'drug_exposure.sig',\n",
- " u'drug_exposure.route_concept_id',\n",
- " u'drug_exposure.effective_drug_dose',\n",
- " u'drug_exposure.dose_unit_concept_id',\n",
- " u'drug_exposure.lot_number',\n",
- " u'drug_exposure.provider_id',\n",
- " u'drug_exposure.visit_occurrence_id',\n",
- " u'drug_exposure.drug_source_value',\n",
- " u'drug_exposure.drug_source_concept_id',\n",
- " u'drug_exposure.route_source_value',\n",
- " u'drug_exposure.dose_unit_source_value']"
+ "array([1, 3, 0, 0])"
]
},
- "execution_count": 111,
+ "execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
@@ -250,12 +246,7 @@
"#\n",
"# find every table with person id at the very least or a subset of fields\n",
"#\n",
- "info = get_tables(client,'raw',['person_id'])\n",
- "# get_fields(xo=names[0],xi=names[1:4],join='person_id')\n",
- "\n",
- "# q = ['person_id']\n",
- "# pairs = list(itertools.combinations(names,len(names)))\n",
- "# pairs[0]"
+ "np.random.randint(0,4,size=4)"
]
},
{
@@ -287,6 +278,72 @@
"x_ = 1"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "x_ = pd.DataFrame({\"group\":[1,1,1,1,1], \"size\":[2,1,1,1,1]})"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " size | \n",
+ "
\n",
+ " \n",
+ " group | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 | \n",
+ " 1.2 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " size\n",
+ "group \n",
+ "1 1.2"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "x_.groupby(['group']).mean()\n"
+ ]
+ },
{
"cell_type": "code",
"execution_count": null,
diff --git a/src/params.py b/src/params.py
new file mode 100644
index 0000000..428ff00
--- /dev/null
+++ b/src/params.py
@@ -0,0 +1,17 @@
+import sys
+SYS_ARGS={}
+if len(sys.argv) > 1 :
+ N = len(sys.argv)
+ for i in range(1,N) :
+ value = 1
+
+ if sys.argv[i].startswith('--') :
+ key = sys.argv[i].replace('-','')
+
+ if i + 1 < N and not sys.argv[i+1].startswith('--') :
+ value = sys.argv[i + 1].strip()
+ SYS_ARGS[key] = value
+ i += 2
+ elif 'action' not in SYS_ARGS:
+ SYS_ARGS['action'] = sys.argv[i].strip()
+
diff --git a/src/risk.py b/src/risk.py
new file mode 100644
index 0000000..b942b14
--- /dev/null
+++ b/src/risk.py
@@ -0,0 +1,226 @@
+"""
+ Steve L. Nyemba & Brad Malin
+ Health Information Privacy Lab.
+
+ This code is proof of concept as to how risk is computed against a database (at least a schema).
+ The engine will read tables that have a given criteria (patient id) and generate a dataset by performing joins.
+ Because joins are process intensive we decided to add a limit to the records pulled.
+
+ TL;DR:
+ This engine generates a dataset and computes risk (marketer and prosecutor)
+ Assumptions:
+ - We assume tables that reference patients will name the keys identically (best practice). This allows us to be able to leverage data store's that don't support referential integrity
+
+ Usage :
+
+ Limitations
+ - It works against bigquery for now
+ @TODO:
+ - Need to write a transport layer (database interface)
+ - Support for referential integrity, so one table can be selected and a dataset derived given referential integrity
+ - Add support for journalist risk
+"""
+import pandas as pd
+import numpy as np
+from google.cloud import bigquery as bq
+import time
+from params import SYS_ARGS
+class utils :
+ """
+ This class is a utility class that will generate SQL-11 compatible code in order to run the risk assessment
+
+ @TODO: plugins for other data-stores
+ """
+ def __init__(self,**args):
+ # self.path = args['path']
+ self.client = args['client']
+
+ def get_tables(self,**args): #id,key='person_id'):
+ """
+ This function returns a list of tables given a key. The key is the name of the field that uniquely designates a patient/person
+ in the database. The list of tables are tables that can be joined given the provided field.
+
+ @param key name of the patient field
+ @param dataset dataset name
+ @param client initialized bigquery client ()
+ @return [{name,fields:[],row_count}]
+ """
+ dataset = args['dataset']
+ client = args['client']
+ key = args['key']
+ r = []
+ ref = client.dataset(dataset)
+ tables = list(client.list_tables(ref))
+ for table in tables :
+
+ if table.table_id.strip() in ['people_seed']:
+ print ' skiping ...'
+ continue
+ ref = table.reference
+ table = client.get_table(ref)
+ schema = table.schema
+ rows = table.num_rows
+ if rows == 0 :
+ continue
+ names = [f.name for f in schema]
+ x = list(set(names) & set([key]))
+ if x :
+ full_name = ".".join([dataset,table.table_id])
+ r.append({"name":table.table_id,"fields":names,"row_count":rows,"full_name":full_name})
+ return r
+ def get_field_name(self,alias,field_name,index):
+ """
+ This function will format the a field name given an index (the number of times it has occurred in projection)
+ The index is intended to avoid a "duplicate field" error (bigquery issue)
+
+ @param alias alias of the table
+ @param field_name name of the field to be formatted
+ @param index the number of times the field appears in the projection
+ """
+ name = [alias,field_name]
+ if index > 0 :
+ return ".".join(name)+" AS :field_name:index".replace(":field_name",field_name).replace(":index",str(index))
+ else:
+ return ".".join(name)
+ def get_sql(self,**args):
+ """
+ This function will generate that will join a list of tables given a key and a limit of records
+ @param tables list of tables
+ @param key key field to be used in the join. The assumption is that the field name is identical across tables (best practice!)
+ @param limit a limit imposed, in case of ristrictions considering joins are resource intensive
+ """
+ tables = args['tables']
+ key = args['key']
+ limit = args['limit'] if 'limit' in args else 300000
+ limit = str(limit)
+ SQL = [
+ """
+ SELECT :fields
+ FROM
+ """]
+ fields = []
+ prev_table = None
+ for table in tables :
+ name = table['full_name'] #".".join([self.i_dataset,table['name']])
+ alias= table['name']
+ index = tables.index(table)
+ sql_ = """
+ (select * from :name limit :limit) as :alias
+ """.replace(":limit",limit)
+ sql_ = sql_.replace(":name",name).replace(":alias",alias)
+ fields += [self.get_field_name(alias,field_name,index) for field_name in table['fields'] if field_name != key or (field_name==key and tables.index(table) == 0) ]
+ if tables.index(table) > 0 :
+ join = """
+ INNER JOIN :sql ON :alias.:field = :prev_alias.:field
+ """.replace(":name",name)
+ join = join.replace(":alias",alias).replace(":field",key).replace(":prev_alias",prev_alias)
+ sql_ = join.replace(":sql",sql_)
+ # sql_ = " ".join([sql_,join])
+ SQL += [sql_]
+ if index == 0:
+ prev_alias = str(alias)
+
+ return " ".join(SQL).replace(":fields"," , ".join(fields))
+
+class risk :
+ """
+ This class will handle the creation of an SQL query that computes marketer and prosecutor risk (for now)
+ """
+ def __init__(self):
+ pass
+ def get_sql(self,**args) :
+ """
+ This function returns the SQL Query that will compute marketer and prosecutor risk
+ @param key key fields (patient identifier)
+ @param table table that is subject of the computation
+ """
+ key = args['key']
+ table = args['table']
+ fields = list(set(table['fields']) - set([key]))
+ #-- We need to select n-fields max 64
+ k = len(fields)
+ n = np.random.randint(2,24) #-- how many random fields are we processing
+ ii = np.random.choice(k,n,replace=False)
+ fields = list(np.array(fields)[ii])
+
+ sql = """
+ SELECT COUNT(g_size) as group_count, SUM(g_size) as patient_count, COUNT(g_size)/SUM(g_size) as marketer, 1/ MIN(g_size) as prosecutor
+ FROM (
+ SELECT COUNT(*) as g_size,:key,:fields
+ FROM :full_name
+ GROUP BY :key,:fields
+ )
+ """.replace(":fields", ",".join(fields)).replace(":full_name",table['full_name']).replace(":key",key).replace(":n",str(n))
+ return sql
+
+
+
+
+
+if 'action' in SYS_ARGS and SYS_ARGS['action'] in ['create','compute'] :
+
+ path = SYS_ARGS['path']
+ client = bq.Client.from_service_account_json(path)
+ i_dataset = SYS_ARGS['i_dataset']
+ key = SYS_ARGS['key']
+
+ mytools = utils(client = client)
+ tables = mytools.get_tables(dataset=i_dataset,client=client,key=key)
+ # print len(tables)
+ # tables = tables[:6]
+
+ if SYS_ARGS['action'] == 'create' :
+ #usage:
+ # create --i_dataset --key --o_dataset --table [--file] --path
+ #
+ create_sql = mytools.get_sql(tables=tables,key=key) #-- The create statement
+ o_dataset = SYS_ARGS['o_dataset']
+ table = SYS_ARGS['table']
+ if 'file' in SYS_ARGS :
+ f = open(table+'.sql','w')
+ f.write(create_sql)
+ f.close()
+ else:
+ job = bq.QueryJobConfig()
+ job.destination = client.dataset(o_dataset).table(table)
+ job.use_query_cache = True
+ job.allow_large_results = True
+ job.priority = 'BATCH'
+ job.time_partitioning = bq.table.TimePartitioning(type_=bq.table.TimePartitioningType.DAY)
+
+ r = client.query(create_sql,location='US',job_config=job)
+
+ print [r.job_id,' ** ',r.state]
+ else:
+ #
+ #
+ tables = [tab for tab in tables if tab['name'] == SYS_ARGS['table'] ]
+ if tables :
+ risk = risk()
+ df = pd.DataFrame()
+ for i in range(0,10) :
+ sql = risk.get_sql(key=SYS_ARGS['key'],table=tables[0])
+ df = df.append(pd.read_gbq(query=sql,private_key=path,dialect='standard'))
+ df.to_csv(SYS_ARGS['table']+'.csv')
+ print [i,' ** ',df.shape[0]]
+ time.sleep(2)
+
+ pass
+else:
+ print 'ERROR'
+ pass
+
+# r = risk(path='/home/steve/dev/google-cloud-sdk/accounts/vumc-test.json', i_dataset='raw',o_dataset='risk_o',o_table='mo')
+# tables = r.get_tables('raw','person_id')
+# sql = r.get_sql(tables=tables[:3],key='person_id')
+# #
+# # let's post this to a designated location
+# #
+# f = open('foo.sql','w')
+# f.write(sql)
+# f.close()
+# r.get_sql(tables=tables,key='person_id')
+# p = r.compute()
+# print p
+# p.to_csv("risk.csv")
+# r.write('foo.sql')
\ No newline at end of file