From 25b30d2c2be7ad6e2034b72028ef5da799c160ca Mon Sep 17 00:00:00 2001 From: Steve Nyemba Date: Tue, 5 Mar 2019 15:47:34 -0600 Subject: [PATCH] bug fix with documentation --- README.md | 6 +++--- risk/__init__.py | 6 +++--- 2 files changed, 6 insertions(+), 6 deletions(-) diff --git a/README.md b/README.md index 96103de..36cdb6d 100644 --- a/README.md +++ b/README.md @@ -39,10 +39,10 @@ The framework will depend on pandas and numpy (for now). Below is a basic sample import numpy as np import pandas as pd - from pandas_risk import * + import risk mydf = pd.DataFrame({"x":np.random.choice( np.random.randint(1,10),50),"y":np.random.choice( np.random.randint(1,10),50),"z":np.random.choice( np.random.randint(1,10),50),"r":np.random.choice( np.random.randint(1,10),50) }) - print mydf.risk.evaluate() + print (mydf.risk.evaluate()) @@ -52,7 +52,7 @@ The framework will depend on pandas and numpy (for now). Below is a basic sample # - Insure the fields are identical in both sample and population # pop = pd.DataFrame({"x":np.random.choice( np.random.randint(1,10),150),"y":np.random.choice( np.random.randint(1,10),150) ,"z":np.random.choice( np.random.randint(1,10),150),"r":np.random.choice( np.random.randint(1,10),150)}) - mydf.risk.evaluate(pop=pop) + print (mydf.risk.evaluate(pop=pop)) @TODO: diff --git a/risk/__init__.py b/risk/__init__.py index fff471f..57e7ee1 100644 --- a/risk/__init__.py +++ b/risk/__init__.py @@ -43,10 +43,10 @@ The framework will depend on pandas and numpy (for now). Below is a basic sample import numpy as np import pandas as pd - from pandas_risk import * + import risk mydf = pd.DataFrame({"x":np.random.choice( np.random.randint(1,10),50),"y":np.random.choice( np.random.randint(1,10),50),"z":np.random.choice( np.random.randint(1,10),50),"r":np.random.choice( np.random.randint(1,10),50) }) - print mydf.risk.evaluate() + print (mydf.risk.evaluate()) @@ -56,7 +56,7 @@ The framework will depend on pandas and numpy (for now). Below is a basic sample # - Insure the fields are identical in both sample and population # pop = pd.DataFrame({"x":np.random.choice( np.random.randint(1,10),150),"y":np.random.choice( np.random.randint(1,10),150) ,"z":np.random.choice( np.random.randint(1,10),150),"r":np.random.choice( np.random.randint(1,10),150)}) - mydf.risk.evaluate(pop=pop) + print (mydf.risk.evaluate(pop=pop)) @TODO: