bug fix and adding usage
This commit is contained in:
parent
cb58675cd3
commit
47f94974c9
32
README.md
32
README.md
|
@ -1,34 +1,16 @@
|
||||||
# deid-risk
|
# deid-risk
|
||||||
|
|
||||||
This project is intended to compute an estimated value of risk for a given database.
|
The code below extends a data-frame by adding it the ability to compute de-identification risk (marketer, prosecutor).
|
||||||
|
Because data-frames can connect to any database/file it will be the responsibility of the user to load the dataset into a data-frame.
|
||||||
|
|
||||||
1. Pull meta data of the database and create a dataset via joins
|
Basic examples that illustrate usage of the the framework are in the notebook folder. The example is derived from
|
||||||
2. Generate the dataset with random selection of features
|
[http://ehelthinformation.ca](http://www.ehealthinformation.ca/wp-content/uploads/2014/08/2009-De-identification-PA-whitepaper1.pdf)
|
||||||
3. Compute risk via SQL using group by
|
|
||||||
## Python environment
|
|
||||||
|
|
||||||
The following are the dependencies needed to run the code:
|
Dependencies:
|
||||||
|
|
||||||
pandas
|
|
||||||
numpy
|
numpy
|
||||||
pandas-gbq
|
pandas
|
||||||
google-cloud-bigquery
|
|
||||||
|
|
||||||
|
Limitations:
|
||||||
## Usage
|
|
||||||
|
|
||||||
**Generate The merged dataset**
|
|
||||||
|
|
||||||
python risk.py create --i_dataset <in dataset|schema> --o_dataset <out dataset|schema> --table <name> --path <bigquery-key-file> --key <patient-id-field-name> [--file ]
|
|
||||||
|
|
||||||
|
|
||||||
**Compute risk (marketer, prosecutor)**
|
|
||||||
|
|
||||||
python risk.py compute --i_dataset <dataset> --table <name> --path <bigquery-key-file> --key <patient-id-field-name>
|
|
||||||
## Limitations
|
|
||||||
- It works against bigquery for now
|
|
||||||
|
|
||||||
@TODO:
|
@TODO:
|
||||||
- Need to write a transport layer (database interface)
|
|
||||||
- Support for referential integrity, so one table can be selected and a dataset derived given referential integrity
|
|
||||||
- Add support for journalist risk
|
- Add support for journalist risk
|
|
@ -2,294 +2,121 @@
|
||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 1,
|
"execution_count": 4,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [],
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"dev-deid-600@aou-res-deid-vumc-test.iam.gserviceaccount.com df0ac049-d5b6-416f-ab3c-6321eda919d6 2018-09-25 08:18:34.829000+00:00 DONE\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
"source": [
|
||||||
|
"\"\"\"\n",
|
||||||
|
" This notebook is intended to show how to use the risk framework:\n",
|
||||||
|
" There are two basic usages:\n",
|
||||||
|
" 1. Experiment\n",
|
||||||
|
" \n",
|
||||||
|
" Here the framework will select a number of random fields other than the patient id and compute risk for the selection.\n",
|
||||||
|
" This will repeat over a designated number of runs.\n",
|
||||||
|
" \n",
|
||||||
|
" The parameters to pass to enable this mode are id=<patient id>,nun_runs=<number of runs>\n",
|
||||||
|
" 2. Assessment\n",
|
||||||
|
" \n",
|
||||||
|
" Here the framework assumes you are only interested in a list of quasi identifiers and will run the evaluation once for a given list of quasi identifiers.\n",
|
||||||
|
" The parameters to enable this mode are id=<patient id>,quasi_id=<list of quasi ids>\n",
|
||||||
|
"\"\"\"\n",
|
||||||
|
"import os\n",
|
||||||
"import pandas as pd\n",
|
"import pandas as pd\n",
|
||||||
"import numpy as np\n",
|
"import numpy as np\n",
|
||||||
"from google.cloud import bigquery as bq\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"client = bq.Client.from_service_account_json('/home/steve/dev/google-cloud-sdk/accounts/vumc-test.json')\n",
|
"\n",
|
||||||
"# pd.read_gbq(query=\"select * from raw.observation limit 10\",private_key='/home/steve/dev/google-cloud-sdk/accounts/vumc-test.json')\n",
|
"#\n",
|
||||||
"jobs = client.list_jobs()\n",
|
"#-- Loading a template file\n",
|
||||||
"for job in jobs :\n",
|
"# The example taken a de-identification white-paper\n",
|
||||||
"# print dir(job)\n",
|
"# http://www.ehealthinformation.ca/wp-content/uploads/2014/08/2009-De-identification-PA-whitepaper1.pdf\n",
|
||||||
" print job.user_email,job.job_id,job.started, job.state\n",
|
"#\n",
|
||||||
" break"
|
"\n",
|
||||||
|
"import pandas as pd\n",
|
||||||
|
"import numpy as np\n",
|
||||||
|
"from io import StringIO\n",
|
||||||
|
"csv = \"\"\"\n",
|
||||||
|
"id,sex,age,profession,drug_test\n",
|
||||||
|
"1,M,37,doctor,-\n",
|
||||||
|
"2,F,28,doctor,+\n",
|
||||||
|
"3,M,37,doctor,-\n",
|
||||||
|
"4,M,28,doctor,+\n",
|
||||||
|
"5,M,28,doctor,-\n",
|
||||||
|
"6,M,37,doctor,-\n",
|
||||||
|
"\"\"\"\n",
|
||||||
|
"f = StringIO()\n",
|
||||||
|
"f.write(unicode(csv))\n",
|
||||||
|
"f.seek(0)\n",
|
||||||
|
"MY_DATAFRAME = pd.read_csv(f) "
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 33,
|
"execution_count": 2,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"xo = ['person_id','date_of_birth','race']\n",
|
|
||||||
"xi = ['person_id','value_as_number','value_source_value']"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 10,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"def get_tables(client,id,fields=[]):\n",
|
|
||||||
"\"\"\"\n",
|
"\"\"\"\n",
|
||||||
" getting table lists from google\n",
|
" Here's the pandas_risk code verbatim. \n",
|
||||||
|
" NOTE: \n",
|
||||||
"\"\"\"\n",
|
"\"\"\"\n",
|
||||||
" r = []\n",
|
"@pd.api.extensions.register_dataframe_accessor(\"deid\")\n",
|
||||||
" ref = client.dataset(id)\n",
|
"class deid :\n",
|
||||||
" tables = list(client.list_tables(ref))\n",
|
" \"\"\"\n",
|
||||||
" for table in tables :\n",
|
" This class is a deidentification class that will compute risk (marketer, prosecutor) given a pandas dataframe\n",
|
||||||
" ref = table.reference\n",
|
" \"\"\"\n",
|
||||||
" schema = client.get_table(ref).schema\n",
|
" def __init__(self,df):\n",
|
||||||
" names = [f.name for f in schema]\n",
|
" self._df = df\n",
|
||||||
" x = list(set(names) & set(fields))\n",
|
|
||||||
" if x :\n",
|
|
||||||
" r.append({\"name\":table.table_id,\"fields\":names})\n",
|
|
||||||
" return r\n",
|
|
||||||
" \n",
|
" \n",
|
||||||
"def get_fields(**args):\n",
|
" def risk(self,**args):\n",
|
||||||
" \"\"\"\n",
|
" \"\"\"\n",
|
||||||
" This function will generate a random set of fields from two tables. Tables are structured as follows \n",
|
" @param id name of patient field \n",
|
||||||
" {name,fields:[],\"y\":}, with \n",
|
" @params num_runs number of runs (default will be 100)\n",
|
||||||
" name table name (needed to generate sql query)\n",
|
" @params quasi_id \tlist of quasi identifiers to be used (this will only perform a single run)\n",
|
||||||
" fields list of field names, used in the projection\n",
|
|
||||||
" y name of the field to be joined.\n",
|
|
||||||
" @param xo candidate table in the join\n",
|
|
||||||
" @param xi candidate table in the join\n",
|
|
||||||
" @param join field by which the tables can be joined.\n",
|
|
||||||
" \"\"\"\n",
|
" \"\"\"\n",
|
||||||
" # The set operation will remove redundancies in the field names (not sure it's a good idea)\n",
|
" \n",
|
||||||
"# xo = args['xo']['fields']\n",
|
" id = args['id']\n",
|
||||||
"# xi = args['xi']['fields']\n",
|
" if 'quasi_id' in args :\n",
|
||||||
"# zi = args['xi']['name']\n",
|
" num_runs = 1\n",
|
||||||
"# return list(set([ \".\".join([args['xo']['name'],name]) for name in xo]) | set(['.'.join([args['xi']['name'],name]) for name in xi if name != args['join']]) )\n",
|
" columns = list(set(args['quasi_id'])- set(id) )\n",
|
||||||
" xo = args['xo']\n",
|
|
||||||
" fields = [\".\".join([args['xo']['name'],name]) for name in args['xo']['fields']]\n",
|
|
||||||
" if not isinstance(args['xi'],list) :\n",
|
|
||||||
" x_ = [args['xi']]\n",
|
|
||||||
" else :\n",
|
" else :\n",
|
||||||
" x_ = args['xi']\n",
|
" num_runs = args['num_runs'] if 'num_runs' in args else 100\n",
|
||||||
" for xi in x_ :\n",
|
" columns = list(set(self._df.columns) - set([id]))\n",
|
||||||
" fields += (['.'.join([xi['name'], name]) for name in xi['fields'] if name != args['join']])\n",
|
" r = pd.DataFrame() \n",
|
||||||
" return fields\n",
|
" k = len(columns)\n",
|
||||||
"def generate_sql(**args):\n",
|
" for i in range(0,num_runs) :\n",
|
||||||
" \"\"\"\n",
|
" #\n",
|
||||||
" This function will generate the SQL query for the resulting join\n",
|
" # let's chose a random number of columns and compute marketer and prosecutor risk\n",
|
||||||
" \"\"\"\n",
|
" # Once the fields are selected we run a groupby clause\n",
|
||||||
|
" #\n",
|
||||||
|
" if 'quasi_id' not in args :\n",
|
||||||
|
" n = np.random.randint(2,k) #-- number of random fields we are picking\n",
|
||||||
|
" ii = np.random.choice(k,n,replace=False)\n",
|
||||||
|
" cols = np.array(columns)[ii].tolist()\n",
|
||||||
|
" else:\n",
|
||||||
|
" cols \t= columns\n",
|
||||||
|
" n \t= len(cols)\n",
|
||||||
|
" x_ = self._df.groupby(cols).count()[id].values\n",
|
||||||
|
" r = r.append(\n",
|
||||||
|
" pd.DataFrame(\n",
|
||||||
|
" [\n",
|
||||||
|
" {\n",
|
||||||
|
" \"selected\":n,\n",
|
||||||
|
" \"marketer\": x_.size / np.float64(np.sum(x_)),\n",
|
||||||
|
" \"prosecutor\":1 / np.float64(np.min(x_))\n",
|
||||||
"\n",
|
"\n",
|
||||||
" xo = args['xo']\n",
|
" }\n",
|
||||||
" x_ = args['xi']\n",
|
" ]\n",
|
||||||
" xo_name = \".\".join([args['prefix'],xo['name'] ]) if 'prefix' in args else xo['name']\n",
|
|
||||||
" SQL = \"SELECT :fields FROM :xo.name \".replace(\":xo.name\",xo_name)\n",
|
|
||||||
" if not isinstance(x_,list):\n",
|
|
||||||
" x_ = [x_]\n",
|
|
||||||
" f = []#[\".\".join([args['xo']['name'],args['join']] )] \n",
|
|
||||||
" INNER_JOINS = []\n",
|
|
||||||
" for xi in x_ :\n",
|
|
||||||
" xi_name = \".\".join([args['prefix'],xi['name'] ]) if 'prefix' in args else xi['name']\n",
|
|
||||||
" JOIN_SQL = \"INNER JOIN :xi.name ON \".replace(':xi.name',xi_name)\n",
|
|
||||||
" value = \".\".join([xi['name'],args['join']])\n",
|
|
||||||
" f.append(value) \n",
|
|
||||||
" \n",
|
|
||||||
" ON_SQL = \"\"\n",
|
|
||||||
" tmp = []\n",
|
|
||||||
" for term in f :\n",
|
|
||||||
" ON_SQL = \":xi.name.:ofield = :xo.name.:ofield\".replace(\":xo.name\",xo['name'])\n",
|
|
||||||
" ON_SQL = ON_SQL.replace(\":xi.name.:ofield\",term).replace(\":ofield\",args['join'])\n",
|
|
||||||
" tmp.append(ON_SQL)\n",
|
|
||||||
" INNER_JOINS += [JOIN_SQL + \" AND \".join(tmp)]\n",
|
|
||||||
" return SQL + \" \".join(INNER_JOINS)\n",
|
|
||||||
"def get_final_sql(**args):\n",
|
|
||||||
" xo = args['xo']\n",
|
|
||||||
" xi = args['xi']\n",
|
|
||||||
" join=args['join']\n",
|
|
||||||
" prefix = args['prefix'] if 'prefix' in args else ''\n",
|
|
||||||
" fields = get_fields (xo=xo,xi=xi,join=join)\n",
|
|
||||||
" k = len(fields)\n",
|
|
||||||
" n = np.random.randint(2,k) #-- number of fields to select\n",
|
|
||||||
" i = np.random.randint(0,k,size=n)\n",
|
|
||||||
" fields = [name for name in fields if fields.index(name) in i]\n",
|
|
||||||
" base_sql = generate_sql(xo=xo,xi=xi,prefix)\n",
|
|
||||||
" SQL = \"\"\"\n",
|
|
||||||
" SELECT AVERAGE(count),size,n as selected_features,k as total_features\n",
|
|
||||||
" FROM(\n",
|
|
||||||
" SELECT COUNT(*) as count,count(:join) as pop,sum(:n) as N,sum(:k) as k,:fields\n",
|
|
||||||
" FROM (:sql)\n",
|
|
||||||
" GROUP BY :fields\n",
|
|
||||||
" )\n",
|
" )\n",
|
||||||
" order by 1\n",
|
" )\n",
|
||||||
|
" g_size = x_.size\n",
|
||||||
|
" n_ids = np.float64(np.sum(x_))\n",
|
||||||
"\n",
|
"\n",
|
||||||
" \"\"\".replace(\":sql\",base_sql)\n",
|
" return r"
|
||||||
"# sql = \"SELECT :fields FROM :xo.name INNER JOIN :xi.name ON :xi.name.:xi.y = :xo.y \"\n",
|
|
||||||
"# fields = \",\".join(get_fields(xo=xi,xi=xi,join=xi['y']))\n",
|
|
||||||
" \n",
|
|
||||||
" \n",
|
|
||||||
"# sql = sql.replace(\":fields\",fields).replace(\":xo.name\",xo['name']).replace(\":xi.name\",xi['name'])\n",
|
|
||||||
"# sql = sql.replace(\":xi.y\",xi['y']).replace(\":xo.y\",xo['y'])\n",
|
|
||||||
"# return sql\n",
|
|
||||||
" \n",
|
|
||||||
" "
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 33,
|
"execution_count": 7,
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"xo = {\"name\":\"person\",\"fields\":['person_id','date_of_birth','race','value_as_number']}\n",
|
|
||||||
"xi = [{\"name\":\"measurement\",\"fields\":['person_id','value_as_number','value_source_value']}] #,{\"name\":\"observation\",\"fields\":[\"person_id\",\"value_as_string\",\"observation_source_value\"]}]\n",
|
|
||||||
"# generate_sql(xo=xo,xi=xi,join=\"person_id\",prefix='raw')\n",
|
|
||||||
"fields = get_fields(xo=xo,xi=xi,join='person_id')\n",
|
|
||||||
"ofields = list(fields)\n",
|
|
||||||
"k = len(fields)\n",
|
|
||||||
"n = np.random.randint(2,k) #-- number of fields to select\n",
|
|
||||||
"i = np.random.randint(0,k,size=n)\n",
|
|
||||||
"fields = [name for name in fields if fields.index(name) in i]"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 34,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"text/plain": [
|
|
||||||
"['person.race', 'person.value_as_number', 'measurement.value_source_value']"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"execution_count": 34,
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "execute_result"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"fields\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 55,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"text/plain": [
|
|
||||||
"'SELECT person_id,value_as_number,measurements.value_source_value,measurements.value_as_number,value_source_value FROM person INNER JOIN measurements ON measurements.person_id = person_id '"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"execution_count": 55,
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "execute_result"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"xo = {\"name\":\"person\",\"fields\":['person_id','date_of_birth','race'],\"y\":\"person_id\"}\n",
|
|
||||||
"xi = {\"name\":\"measurements\",\"fields\":['person_id','value_as_number','value_source_value'],\"y\":\"person_id\"}\n",
|
|
||||||
"generate_sql(xo=xo,xi=xi)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 59,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"text/plain": [
|
|
||||||
"[('a', 'b'), ('a', 'c'), ('b', 'c')]"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"execution_count": 59,
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "execute_result"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"\"\"\"\n",
|
|
||||||
" We are designing a process that will take two tables that will generate \n",
|
|
||||||
"\"\"\"\n",
|
|
||||||
"import itertools\n",
|
|
||||||
"list(itertools.combinations(['a','b','c'],2))"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 6,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"text/plain": [
|
|
||||||
"array([1, 3, 0, 0])"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"execution_count": 6,
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "execute_result"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"#\n",
|
|
||||||
"# find every table with person id at the very least or a subset of fields\n",
|
|
||||||
"#\n",
|
|
||||||
"np.random.randint(0,4,size=4)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 90,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"text/plain": [
|
|
||||||
"['a']"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"execution_count": 90,
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "execute_result"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"list(set(['a','b']) & set(['a']))"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 120,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"x_ = 1"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 10,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"x_ = pd.DataFrame({\"group\":[1,1,1,1,1], \"size\":[2,1,1,1,1]})"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 12,
|
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
|
@ -313,35 +140,125 @@
|
||||||
" <thead>\n",
|
" <thead>\n",
|
||||||
" <tr style=\"text-align: right;\">\n",
|
" <tr style=\"text-align: right;\">\n",
|
||||||
" <th></th>\n",
|
" <th></th>\n",
|
||||||
" <th>size</th>\n",
|
" <th>marketer</th>\n",
|
||||||
" </tr>\n",
|
" <th>prosecutor</th>\n",
|
||||||
" <tr>\n",
|
" <th>selected</th>\n",
|
||||||
" <th>group</th>\n",
|
|
||||||
" <th></th>\n",
|
|
||||||
" </tr>\n",
|
" </tr>\n",
|
||||||
" </thead>\n",
|
" </thead>\n",
|
||||||
" <tbody>\n",
|
" <tbody>\n",
|
||||||
" <tr>\n",
|
" <tr>\n",
|
||||||
" <th>1</th>\n",
|
" <th>0</th>\n",
|
||||||
" <td>1.2</td>\n",
|
" <td>0.500000</td>\n",
|
||||||
|
" <td>1.0</td>\n",
|
||||||
|
" <td>2</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>0</th>\n",
|
||||||
|
" <td>0.500000</td>\n",
|
||||||
|
" <td>1.0</td>\n",
|
||||||
|
" <td>3</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>0</th>\n",
|
||||||
|
" <td>0.500000</td>\n",
|
||||||
|
" <td>1.0</td>\n",
|
||||||
|
" <td>3</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>0</th>\n",
|
||||||
|
" <td>0.333333</td>\n",
|
||||||
|
" <td>1.0</td>\n",
|
||||||
|
" <td>2</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>0</th>\n",
|
||||||
|
" <td>0.333333</td>\n",
|
||||||
|
" <td>0.5</td>\n",
|
||||||
|
" <td>2</td>\n",
|
||||||
" </tr>\n",
|
" </tr>\n",
|
||||||
" </tbody>\n",
|
" </tbody>\n",
|
||||||
"</table>\n",
|
"</table>\n",
|
||||||
"</div>"
|
"</div>"
|
||||||
],
|
],
|
||||||
"text/plain": [
|
"text/plain": [
|
||||||
" size\n",
|
" marketer prosecutor selected\n",
|
||||||
"group \n",
|
"0 0.500000 1.0 2\n",
|
||||||
"1 1.2"
|
"0 0.500000 1.0 3\n",
|
||||||
|
"0 0.500000 1.0 3\n",
|
||||||
|
"0 0.333333 1.0 2\n",
|
||||||
|
"0 0.333333 0.5 2"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"execution_count": 12,
|
"execution_count": 7,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"output_type": "execute_result"
|
"output_type": "execute_result"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"x_.groupby(['group']).mean()\n"
|
"#\n",
|
||||||
|
"# Lets us compute risk here for a random any random selection of quasi identifiers\n",
|
||||||
|
"# We will run this experiment 5 times\n",
|
||||||
|
"#\n",
|
||||||
|
"MY_DATAFRAME.deid.risk(id='id',num_runs=5)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 8,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/html": [
|
||||||
|
"<div>\n",
|
||||||
|
"<style scoped>\n",
|
||||||
|
" .dataframe tbody tr th:only-of-type {\n",
|
||||||
|
" vertical-align: middle;\n",
|
||||||
|
" }\n",
|
||||||
|
"\n",
|
||||||
|
" .dataframe tbody tr th {\n",
|
||||||
|
" vertical-align: top;\n",
|
||||||
|
" }\n",
|
||||||
|
"\n",
|
||||||
|
" .dataframe thead th {\n",
|
||||||
|
" text-align: right;\n",
|
||||||
|
" }\n",
|
||||||
|
"</style>\n",
|
||||||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||||||
|
" <thead>\n",
|
||||||
|
" <tr style=\"text-align: right;\">\n",
|
||||||
|
" <th></th>\n",
|
||||||
|
" <th>marketer</th>\n",
|
||||||
|
" <th>prosecutor</th>\n",
|
||||||
|
" <th>selected</th>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" </thead>\n",
|
||||||
|
" <tbody>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>0</th>\n",
|
||||||
|
" <td>0.5</td>\n",
|
||||||
|
" <td>1.0</td>\n",
|
||||||
|
" <td>3</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" </tbody>\n",
|
||||||
|
"</table>\n",
|
||||||
|
"</div>"
|
||||||
|
],
|
||||||
|
"text/plain": [
|
||||||
|
" marketer prosecutor selected\n",
|
||||||
|
"0 0.5 1.0 3"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 8,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"#\n",
|
||||||
|
"# In this scenario we are just interested in sex,profession,age\n",
|
||||||
|
"#\n",
|
||||||
|
"MY_DATAFRAME.deid.risk(id='id',quasi_id=['age','sex','profession'])"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
|
Loading…
Reference in New Issue