adding simple assessment of a table in a single run given a list of quasi identifiers
This commit is contained in:
parent
8807a4ef49
commit
cb58675cd3
|
@ -35,25 +35,32 @@ class deid :
|
|||
"""
|
||||
@param id name of patient field
|
||||
@params num_runs number of runs (default will be 100)
|
||||
@params quasi_id list of quasi identifiers to be used (this will only perform a single run)
|
||||
"""
|
||||
|
||||
id = args['id']
|
||||
|
||||
num_runs = args['num_runs'] if 'num_runs' in args else 100
|
||||
if 'quasi_id' in args :
|
||||
num_runs = 1
|
||||
columns = list(set(args['quasi_id'])- set(id) )
|
||||
else :
|
||||
num_runs = args['num_runs'] if 'num_runs' in args else 100
|
||||
columns = list(set(self._df.columns) - set([id]))
|
||||
r = pd.DataFrame()
|
||||
|
||||
columns = list(set(self._df.columns) - set([id]))
|
||||
k = len(columns)
|
||||
for i in range(0,num_runs) :
|
||||
#
|
||||
# let's chose a random number of columns and compute marketer and prosecutor risk
|
||||
# Once the fields are selected we run a groupby clause
|
||||
#
|
||||
|
||||
n = np.random.randint(2,k) #-- number of random fields we are picking
|
||||
ii = np.random.choice(k,n,replace=False)
|
||||
cols = np.array(columns)[ii].tolist()
|
||||
x_ = self._df.groupby(cols).count()[id].values
|
||||
if 'quasi_id' not in args :
|
||||
n = np.random.randint(2,k) #-- number of random fields we are picking
|
||||
ii = np.random.choice(k,n,replace=False)
|
||||
cols = np.array(columns)[ii].tolist()
|
||||
else:
|
||||
cols = columns
|
||||
n = len(cols)
|
||||
x_ = self._df.groupby(cols).count()[id].values
|
||||
r = r.append(
|
||||
pd.DataFrame(
|
||||
[
|
||||
|
@ -72,20 +79,22 @@ class deid :
|
|||
return r
|
||||
|
||||
|
||||
# import pandas as pd
|
||||
# import numpy as np
|
||||
# from io import StringIO
|
||||
# csv = """
|
||||
# id,sex,age,profession,drug_test
|
||||
# 1,M,37,doctor,-
|
||||
# 2,F,28,doctor,+
|
||||
# 3,M,37,doctor,-
|
||||
# 4,M,28,doctor,+
|
||||
# 5,M,28,doctor,-
|
||||
# 6,M,37,doctor,-
|
||||
# """
|
||||
# f = StringIO()
|
||||
# f.write(unicode(csv))
|
||||
# f.seek(0)
|
||||
# df = pd.read_csv(f)
|
||||
# print df.deid.risk(id='id',num_runs=2)
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from io import StringIO
|
||||
csv = """
|
||||
id,sex,age,profession,drug_test
|
||||
1,M,37,doctor,-
|
||||
2,F,28,doctor,+
|
||||
3,M,37,doctor,-
|
||||
4,M,28,doctor,+
|
||||
5,M,28,doctor,-
|
||||
6,M,37,doctor,-
|
||||
"""
|
||||
f = StringIO()
|
||||
f.write(unicode(csv))
|
||||
f.seek(0)
|
||||
df = pd.read_csv(f)
|
||||
print df.deid.risk(id='id',num_runs=2)
|
||||
print " *** "
|
||||
print df.deid.risk(id='id',quasi_id=['sex','age','profession'])
|
||||
|
|
Loading…
Reference in New Issue