""" Health Information Privacy Lab Steve L. Nyemba & Brad. Malin This is an extension to the pandas data-frame that will perform a risk assessment on a variety of attributes This implementation puts the responsibility on the user of the framework to join datasets and load the final results into a pandas data-frame. The code will randomly select fields and compute the risk (marketer and prosecutor) and perform a given number of runs. Usage: from pandas_risk import * mydataframe = pd.DataFrame('/myfile.csv') risk = mydataframe.deid.risk(id=,num_runs=) @TODO: - Provide a selected number of fields and risk will be computed for those fields. - include journalist risk """ import pandas as pd import numpy as np @pd.api.extensions.register_dataframe_accessor("deid") class deid : """ This class is a deidentification class that will compute risk (marketer, prosecutor) given a pandas dataframe """ def __init__(self,df): self._df = df def risk(self,**args): """ @param id name of patient field @params num_runs number of runs (default will be 100) @params quasi_id list of quasi identifiers to be used (this will only perform a single run) """ id = args['id'] if 'quasi_id' in args : num_runs = 1 columns = list(set(args['quasi_id'])- set(id) ) else : num_runs = args['num_runs'] if 'num_runs' in args else 100 columns = list(set(self._df.columns) - set([id])) r = pd.DataFrame() k = len(columns) N = self._df.shape[0] tmp = self._df.fillna(' ') np.random.seed(1) for i in range(0,num_runs) : # # let's chose a random number of columns and compute marketer and prosecutor risk # Once the fields are selected we run a groupby clause # if 'quasi_id' not in args : if 'field_count' in args : # # We chose to limit how many fields we passin n = np.random.randint(2,int(args['field_count'])) #-- number of random fields we are picking else : n = np.random.randint(2,k) #-- number of random fields we are picking ii = np.random.choice(k,n,replace=False) cols = np.array(columns)[ii].tolist() policy = np.zeros(k) policy [ii] = 1 policy = pd.DataFrame(policy).T else: cols = columns policy = np.ones(k) policy = pd.DataFrame(policy).T n = len(cols) policy.columns = columns N = tmp.shape[0] x_ = tmp.groupby(cols).size().values # print [id,i,n,k,self._df.groupby(cols).count()] r = r.append( pd.DataFrame( [ { "group_count":x_.size, "patient_count":N, "field_count":n, "marketer": x_.size / np.float64(np.sum(x_)), "prosecutor":1 / np.float64(np.min(x_)) } ] ).join(policy) ) # g_size = x_.size # n_ids = np.float64(np.sum(x_)) # sql = """ # SELECT COUNT(g_size) as group_count, :patient_count as patient_count,SUM(g_size) as rec_count, COUNT(g_size)/SUM(g_size) as marketer, 1/ MIN(g_size) as prosecutor, :n as field_count # FROM ( # SELECT COUNT(*) as g_size,:key,:fields # FROM :full_name # GROUP BY :fields # """.replace(":n",str(n)).replace(":fields",",".join(cols)).replace(":key",id).replace(":patient_count",str(N)) # r.append(self._df.query(sql.replace("\n"," ").replace("\r"," ") )) return r # df = pd.read_gbq("select * from deid_risk.risk_30k",private_key='/home/steve/dev/google-cloud-sdk/accounts/curation-test.json') # r = df.deid.risk(id='person_id',num_runs=200) # print r[['field_count','patient_count','marketer','prosecutor']]