privacykit/README.md

34 lines
1.1 KiB
Markdown

# deid-risk
This project is intended to compute an estimated value of risk for a given database.
1. Pull meta data of the database and create a dataset via joins
2. Generate the dataset with random selection of features
3. Compute risk via SQL using group by
## Python environment
The following are the dependencies needed to run the code:
pandas
numpy
pandas-gbq
google-cloud-bigquery
## Usage
**Generate The merged dataset**
python risk.py create --i_dataset <in dataset|schema> --o_dataset <out dataset|schema> --table <name> --path <bigquery-key-file> --key <patient-id-field-name> [--file ]
**Compute risk (marketer, prosecutor)**
python risk.py compute --i_dataset <dataset> --table <name> --path <bigquery-key-file> --key <patient-id-field-name>
## Limitations
- It works against bigquery for now
@TODO:
- Need to write a transport layer (database interface)
- Support for referential integrity, so one table can be selected and a dataset derived given referential integrity
- Add support for journalist risk