privacykit/privacykit/risk.py

453 lines
18 KiB
Python

"""
Health Information Privacy Lab
Brad. Malin, Weiyi Xia, Steve L. Nyemba
This framework computes re-identification risk of a dataset assuming the data being shared can be loaded into a dataframe (pandas)
The framework will compute the following risk measures:
- marketer
- prosecutor
- pitman
References :
https://www.scb.se/contentassets/ff271eeeca694f47ae99b942de61df83/applying-pitmans-sampling-formula-to-microdata-disclosure-risk-assessment.pdf
This framework integrates pandas (for now) as an extension and can be used in two modes :
Experimental mode
Here the assumption is that we are not sure of the attributes to be disclosed, the framework will explore a variety of combinations and associate risk measures every random combinations
Evaluation mode
The evaluation mode assumes the set of attributes given are known and thus will evaluate risk for a subset of attributes.
features :
- determine viable fields (quantifiable in terms of uniqueness). This is a way to identify fields that can act as identifiers.
- explore and evaluate risk of a sample dataset against a known population dataset
- explore and evaluate risk on a sample dataset
Usage:
from pandas_risk import *
mydataframe = pd.DataFrame('/myfile.csv')
resp = mydataframe.risk.evaluate(id=<name of patient field>,num_runs=<number of runs>,cols=[])
resp = mydataframe.risk.explore(id=<name of patient field>,num_runs=<number of runs>,cols=[])
@TODO:
- Provide a selected number of fields and risk will be computed for those fields.
- include journalist risk
"""
import pandas as pd
import numpy as np
import logging
import json
from datetime import datetime
import sys
from itertools import combinations
# class Compute:
# pass
# class Population(Compute):
# pass
@pd.api.extensions.register_dataframe_accessor("risk")
class deid :
"""
This class is a deidentification class that will compute risk (marketer, prosecutor) given a pandas dataframe
"""
def __init__(self,df):
self._df = df.fillna(' ')
#
# Let's get the distribution of the values so we know what how unique the fields are
#
values = df.apply(lambda col: col.unique().size / df.shape[0])
self._dinfo = dict(zip(df.columns.tolist(),values))
# self.sample = self._df
self.init(sample=self._df)
def init(self,**_args):
_sample = _args['sample'] if 'sample' in _args else self._df
_columns = [] if 'columns' not in _args else _args['columns']
if _columns :
self._compute = Compute(sample = _sample,columns=_columns)
else:
self._comput = Compute(sample=_sample)
self._pcompute= Population()
def explore(self,**args):
"""
This function will perform experimentation by performing a random policies (combinations of attributes)
This function is intended to explore a variety of policies and evaluate their associated risk.
:pop|sample data-frame with population or sample reference
:field_count number of fields to randomly select
:strict if set the field_count is exact otherwise field_count is range from 2-field_count
:num_runs number of runs (by default 5)
"""
pop= args['pop'] if 'pop' in args else None
if 'pop_size' in args :
pop_size = np.float64(args['pop_size'])
else:
pop_size = -1
#
# Policies will be generated with a number of runs
#
RUNS = args['num_runs'] if 'num_runs' in args else 5
sample = args['sample'] if 'sample' in args else pd.DataFrame(self._df)
k = sample.columns.size if 'field_count' not in args else int(args['field_count']) +1
#
# remove fields that are unique, they function as identifiers
#
if 'id' in args :
id = args['id']
columns = list(set(sample.columns.tolist()) - set([id]))
else:
columns = sample.columns.tolist()
# If columns are not specified we can derive them from self._dinfo
# given the distribution all fields that are < 1 will be accounted for
# columns = args['cols'] if 'cols' in args else [key for key in self._dinfo if self._dinfo[key] < 1]
o = pd.DataFrame()
columns = [key for key in self._dinfo if self._dinfo[key] < 1]
_policy_count = 2 if 'policy_count' not in args else int(args['policy_count'])
_policies = []
_index = 0
for size in np.arange(2,len(columns)) :
p = list(combinations(columns,size))
p = (np.array(p)[ np.random.choice( len(p), _policy_count)].tolist())
for cols in p :
flag = 'Policy_'+str(_index)
r = self.evaluate(sample=sample,cols=cols,flag = flag)
p = pd.DataFrame(1*sample.columns.isin(cols)).T
p.columns = sample.columns
o = pd.concat([o,r.join(p)])
o['attributes'] = ','.join(cols)
# o['attr'] = ','.join(r.apply())
_index += 1
#
# We rename flags to policies and adequately number them, we also have a column to summarize the attributes attr
#
o.index = np.arange(o.shape[0]).astype(np.int64)
o = o.rename(columns={'flag':'policies'})
return o
def evaluate(self,**_args):
_measure = {}
self.init(**_args)
_names = ['marketer','journalist','prosecutor'] #+ (['pitman'] if 'pop_size' in _args else [])
for label in _names :
_pointer = getattr(self,label)
_measure[label] = _pointer(**_args)
_measure['fields'] = self._compute.cache['count']['fields']
_measure['groups'] = self._compute.cache['count']['groups']
_measure['rows'] = self._compute.cache['count']['rows']
if 'attr' in _args :
_measure = dict(_args['attr'],**_measure)
return pd.DataFrame([_measure])
def _evaluate(self, **args):
"""
This function has the ability to evaluate risk associated with either a population or a sample dataset
:sample sample dataset
:pop population dataset
:cols list of columns of interest or policies
:flag user provided flag for the context of the evaluation
"""
if 'sample' in args :
sample = pd.DataFrame(args['sample'])
else:
sample = pd.DataFrame(self._df)
if not args or 'cols' not in args:
# cols = sample.columns.tolist()
cols = [key for key in self._dinfo if self._dinfo[key] < 1]
elif args and 'cols' in args:
cols = args['cols']
#
#
flag = 'UNFLAGGED' if 'flag' not in args else args['flag']
#
# @TODO: auto select the columns i.e removing the columns that will have the effect of an identifier
#
# if 'population' in args :
# pop = pd.DataFrame(args['population'])
r = {"flag":flag}
# if sample :
handle_sample = Compute()
xi = sample.groupby(cols,as_index=False).count().values
handle_sample.set('groups',xi)
if 'pop_size' in args :
pop_size = np.float64(args['pop_size'])
else:
pop_size = -1
#
#-- The following conditional line is to address the labels that will be returned
# @TODO: Find a more elegant way of doing this.
#
if 'pop' in args :
label_market = 'sample marketer'
label_prosec = 'sample prosecutor'
label_groupN = 'sample group count'
label_unique = 'sample journalist' #'sample unique ratio'
# r['sample marketer'] = handle_sample.marketer()
# r['sample prosecutor'] = handle_sample.prosecutor()
# r['sample unique ratio'] = handle_sample.unique_ratio()
# r['sample group count'] = xi.size
# r['sample group count'] = len(xi)
else:
label_market = 'marketer'
label_prosec = 'prosecutor'
label_groupN = 'group count'
label_unique = 'journalist' #'unique ratio'
# r['marketer'] = handle_sample.marketer()
# r['prosecutor'] = handle_sample.prosecutor()
# r['unique ratio'] = handle_sample.unique_ratio()
# r['group count'] = xi.size
# r['group count'] = len(xi)
if pop_size > 0 :
handle_sample.set('pop_size',pop_size)
r['pitman risk'] = handle_sample.pitman()
r[label_market] = handle_sample.marketer()
r[label_unique] = handle_sample.unique_ratio()
r[label_prosec] = handle_sample.prosecutor()
r[label_groupN] = len(xi)
if 'pop' in args :
xi = pd.DataFrame({"sample_group_size":sample.groupby(cols,as_index=False).count()}).reset_index()
yi = pd.DataFrame({"population_group_size":args['pop'].groupby(cols,as_index=False).size()}).reset_index()
merged_groups = pd.merge(xi,yi,on=cols,how='inner')
handle_population= Population()
handle_population.set('merged_groups',merged_groups)
r['pop. marketer'] = handle_population.marketer()
r['pitman risk'] = handle_population.pitman()
r['pop. group size'] = np.unique(yi.population_group_size).size
#
# At this point we have both columns for either sample,population or both
#
r['field count'] = len(cols)
return pd.DataFrame([r])
def marketer(self,**_args):
"""
This function delegates the calls to compute marketer risk of a given dataset or sample
:sample optional sample dataset
:columns optional columns of the dataset, if non is provided and inference will be made using non-unique columns
"""
if 'pop' not in _args :
if not 'sample' in _args and not 'columns' in _args :
# _handler = self._compute
pass
else:
self.init(**_args)
# _handler = Compute(**_args)
_handler = self._compute
else:
#
# Computing population estimates for the population
self._pcompute.init(**_args)
handler = self._pcompute
return _handler.marketer()
def journalist(self,**_args):
"""
This function delegates the calls to compute journalist risk of a given dataset or sample
:sample optional sample dataset
:columns optional columns of the dataset, if non is provided and inference will be made using non-unique columns
"""
if 'pop' not in _args :
if not 'sample' in _args and not 'columns' in _args :
_handler = self._compute
else:
self.init(**_args)
# _handler = Compute(**_args)
_handler = self._compute
# return _compute.journalist()
else:
self._pcompute.init(**_args)
_handler = self._pcompute
return _handler.journalist()
def prosecutor(self,**_args):
"""
This function delegates the calls to compute prosecutor risk of a given dataset or sample
:sample optional sample dataset
:columns optional columns of the dataset, if non is provided and inference will be made using non-unique columns
"""
if 'pop' not in _args :
if not 'sample' in _args and not 'columns' in _args :
# _handler = self._compute
pass
else:
self.init(**_args)
# _handler = Compute(**_args)
_handler = self._compute
else:
self._pcompute.init(**_args)
_handler = self._pcompute
return _handler.prosecutor()
def pitman(self,**_args):
if 'population' not in _args :
pop_size = int(_args['pop_size'])
self._compute.set('pop_size',pop_size)
_handler = self._compute;
else:
self._pcompute.init(**_args)
_handler = self._pcompute
return _handler.pitman()
# xi = pd.DataFrame({"sample_group_size":sample.groupby(cols,as_index=False).count()}).reset_index()
# yi = pd.DataFrame({"population_group_size":args['pop'].groupby(cols,as_index=False).size()}).reset_index()
# merged_groups = pd.merge(xi,yi,on=cols,how='inner')
# handle_population= Population()
# handle_population.set('merged_groups',merged_groups)
class Risk :
"""
This class is an abstraction of how we chose to structure risk computation i.e in 2 sub classes:
- Sample computes risk associated with a sample dataset only
- Population computes risk associated with a population
"""
def __init__(self):
self.cache = {}
def set(self,key,value):
if id not in self.cache :
self.cache[id] = {}
self.cache[key] = value
class Compute(Risk):
"""
This class will compute risk for the sample dataset: the marketer and prosecutor risk are computed by default.
This class can optionally add pitman risk if the population size is known.
"""
def __init__(self,**_args):
super().__init__()
self._sample = _args['sample'] if 'sample' in _args else pd.DataFrame()
self._columns= _args['columns'] if 'columns' in _args else None
self.cache['count'] = {'groups':0,'fields':0,'rows':0}
if not self._columns :
values = self._sample.apply(lambda col: col.unique().size / self._sample.shape[0])
self._dinfo = dict(zip(self._sample.columns.tolist(),values))
self._columns = [key for key in self._dinfo if self._dinfo[key] < 1]
#
# At this point we have all the columns that are valid candidates even if the user didn't specify them
self.cache['count']['fields'] = len(self._columns)
if self._sample.shape[0] > 0 and self._columns:
_sample = _args ['sample']
_groups = self._sample.groupby(self._columns,as_index=False).count().values
self.set('groups',_groups)
self.cache['count']['groups'] = len(_groups)
self.cache['count']['rows'] = np.sum([_g[-1] for _g in _groups])
def marketer(self):
"""
computing marketer risk for sample dataset
"""
groups = self.cache['groups']
# group_count = groups.size
# row_count = groups.sum()
# group_count = len(groups)
group_count = self.cache['count']['groups']
# row_count = np.sum([_g[-1] for _g in groups])
row_count = self.cache['count']['rows']
return group_count / np.float64(row_count)
def prosecutor(self):
"""
The prosecutor risk consists in determining 1 over the smallest group size
It identifies if there is at least one record that is unique
"""
groups = self.cache['groups']
_min = np.min([_g[-1] for _g in groups])
# return 1 / np.float64(groups.min())
return 1/ np.float64(_min)
def unique_ratio(self):
groups = self.cache['groups']
# row_count = groups.sum()
# row_count = np.sum([_g[-1] for _g in groups])
row_count = self.cache['count']['rows']
# return groups[groups == 1].sum() / np.float64(row_count)
values = [_g[-1] for _g in groups if _g[-1] == 1]
return np.sum(values) / np.float64(row_count)
def journalist(self):
return self.unique_ratio()
def pitman(self):
"""
This function will approximate pitman de-identification risk based on pitman sampling
"""
groups = self.cache['groups']
print (self.cache['pop_size'])
si = groups[groups == 1].size
# u = groups.size
u = len(groups)
alpha = np.divide(si , np.float64(u) )
# row_count = np.sum([_g[-1] for _g in groups])
row_count = self.cache['count']['rows']
# f = np.divide(groups.sum(), np.float64(self.cache['pop_size']))
f = np.divide(row_count, np.float64(self.cache['pop_size']))
return np.power(f,1-alpha)
class Population(Compute):
"""
This class will compute risk for datasets that have population information or datasets associated with them.
This computation includes pitman risk (it requires minimal information about population)
"""
def __init__(self,**_args):
super().__init__(**_args)
def init(self,**_args):
xi = pd.DataFrame({"sample_group_size":self._sample.groupby(self._columns,as_index=False).count()}).reset_index()
yi = pd.DataFrame({"population_group_size":_args['population'].groupby(self._columns,as_index=False).size()}).reset_index()
merged_groups = pd.merge(xi,yi,on=self._columns,how='inner')
self.set('merged_groups',merged_groups)
def set(self,key,value):
self.set(self,key,value)
if key == 'merged_groups' :
self.set(self,'pop_size',np.float64(value.population_group_size.sum()) )
self.set(self,'groups',value.sample_group_size)
"""
This class will measure risk and account for the existance of a population
:merged_groups {sample_group_size, population_group_size} is a merged dataset with group sizes of both population and sample
"""
def marketer(self):
"""
This function requires
"""
r = self.cache['merged_groups']
sample_row_count = r.sample_group_size.sum()
#
# @TODO : make sure the above line is size (not sum)
# sample_row_count = r.sample_group_size.size
return r.apply(lambda row: (row.sample_group_size / np.float64(row.population_group_size)) /np.float64(sample_row_count) ,axis=1).sum()