databricks-cli/bundle/config/mutator/resolve_variable_references.go

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

192 lines
5.7 KiB
Go
Raw Permalink Normal View History

Use dynamic configuration model in bundles (#1098) ## Changes This is a fundamental change to how we load and process bundle configuration. We now depend on the configuration being represented as a `dyn.Value`. This representation is functionally equivalent to Go's `any` (it is variadic) and allows us to capture metadata associated with a value, such as where it was defined (e.g. file, line, and column). It also allows us to represent Go's zero values properly (e.g. empty string, integer equal to 0, or boolean false). Using this representation allows us to let the configuration model deviate from the typed structure we have been relying on so far (`config.Root`). We need to deviate from these types when using variables for fields that are not a string themselves. For example, using `${var.num_workers}` for an integer `workers` field was impossible until now (though not implemented in this change). The loader for a `dyn.Value` includes functionality to capture any and all type mismatches between the user-defined configuration and the expected types. These mismatches can be surfaced as validation errors in future PRs. Given that many mutators expect the typed struct to be the source of truth, this change converts between the dynamic representation and the typed representation on mutator entry and exit. Existing mutators can continue to modify the typed representation and these modifications are reflected in the dynamic representation (see `MarkMutatorEntry` and `MarkMutatorExit` in `bundle/config/root.go`). Required changes included in this change: * The existing interpolation package is removed in favor of `libs/dyn/dynvar`. * Functionality to merge job clusters, job tasks, and pipeline clusters are now all broken out into their own mutators. To be implemented later: * Allow variable references for non-string types. * Surface diagnostics about the configuration provided by the user in the validation output. * Some mutators use a resource's configuration file path to resolve related relative paths. These depend on `bundle/config/paths.Path` being set and populated through `ConfigureConfigFilePath`. Instead, they should interact with the dynamically typed configuration directly. Doing this also unlocks being able to differentiate different base paths used within a job (e.g. a task override with a relative path defined in a directory other than the base job). ## Tests * Existing unit tests pass (some have been modified to accommodate) * Integration tests pass
2024-02-16 19:41:58 +00:00
package mutator
import (
"context"
"fmt"
Use dynamic configuration model in bundles (#1098) ## Changes This is a fundamental change to how we load and process bundle configuration. We now depend on the configuration being represented as a `dyn.Value`. This representation is functionally equivalent to Go's `any` (it is variadic) and allows us to capture metadata associated with a value, such as where it was defined (e.g. file, line, and column). It also allows us to represent Go's zero values properly (e.g. empty string, integer equal to 0, or boolean false). Using this representation allows us to let the configuration model deviate from the typed structure we have been relying on so far (`config.Root`). We need to deviate from these types when using variables for fields that are not a string themselves. For example, using `${var.num_workers}` for an integer `workers` field was impossible until now (though not implemented in this change). The loader for a `dyn.Value` includes functionality to capture any and all type mismatches between the user-defined configuration and the expected types. These mismatches can be surfaced as validation errors in future PRs. Given that many mutators expect the typed struct to be the source of truth, this change converts between the dynamic representation and the typed representation on mutator entry and exit. Existing mutators can continue to modify the typed representation and these modifications are reflected in the dynamic representation (see `MarkMutatorEntry` and `MarkMutatorExit` in `bundle/config/root.go`). Required changes included in this change: * The existing interpolation package is removed in favor of `libs/dyn/dynvar`. * Functionality to merge job clusters, job tasks, and pipeline clusters are now all broken out into their own mutators. To be implemented later: * Allow variable references for non-string types. * Surface diagnostics about the configuration provided by the user in the validation output. * Some mutators use a resource's configuration file path to resolve related relative paths. These depend on `bundle/config/paths.Path` being set and populated through `ConfigureConfigFilePath`. Instead, they should interact with the dynamically typed configuration directly. Doing this also unlocks being able to differentiate different base paths used within a job (e.g. a task override with a relative path defined in a directory other than the base job). ## Tests * Existing unit tests pass (some have been modified to accommodate) * Integration tests pass
2024-02-16 19:41:58 +00:00
"github.com/databricks/cli/bundle"
"github.com/databricks/cli/bundle/config/variable"
"github.com/databricks/cli/libs/diag"
Use dynamic configuration model in bundles (#1098) ## Changes This is a fundamental change to how we load and process bundle configuration. We now depend on the configuration being represented as a `dyn.Value`. This representation is functionally equivalent to Go's `any` (it is variadic) and allows us to capture metadata associated with a value, such as where it was defined (e.g. file, line, and column). It also allows us to represent Go's zero values properly (e.g. empty string, integer equal to 0, or boolean false). Using this representation allows us to let the configuration model deviate from the typed structure we have been relying on so far (`config.Root`). We need to deviate from these types when using variables for fields that are not a string themselves. For example, using `${var.num_workers}` for an integer `workers` field was impossible until now (though not implemented in this change). The loader for a `dyn.Value` includes functionality to capture any and all type mismatches between the user-defined configuration and the expected types. These mismatches can be surfaced as validation errors in future PRs. Given that many mutators expect the typed struct to be the source of truth, this change converts between the dynamic representation and the typed representation on mutator entry and exit. Existing mutators can continue to modify the typed representation and these modifications are reflected in the dynamic representation (see `MarkMutatorEntry` and `MarkMutatorExit` in `bundle/config/root.go`). Required changes included in this change: * The existing interpolation package is removed in favor of `libs/dyn/dynvar`. * Functionality to merge job clusters, job tasks, and pipeline clusters are now all broken out into their own mutators. To be implemented later: * Allow variable references for non-string types. * Surface diagnostics about the configuration provided by the user in the validation output. * Some mutators use a resource's configuration file path to resolve related relative paths. These depend on `bundle/config/paths.Path` being set and populated through `ConfigureConfigFilePath`. Instead, they should interact with the dynamically typed configuration directly. Doing this also unlocks being able to differentiate different base paths used within a job (e.g. a task override with a relative path defined in a directory other than the base job). ## Tests * Existing unit tests pass (some have been modified to accommodate) * Integration tests pass
2024-02-16 19:41:58 +00:00
"github.com/databricks/cli/libs/dyn"
"github.com/databricks/cli/libs/dyn/convert"
"github.com/databricks/cli/libs/dyn/dynvar"
)
type resolveVariableReferences struct {
prefixes []string
pattern dyn.Pattern
lookupFn func(dyn.Value, dyn.Path) (dyn.Value, error)
skipFn func(dyn.Value) bool
Use dynamic configuration model in bundles (#1098) ## Changes This is a fundamental change to how we load and process bundle configuration. We now depend on the configuration being represented as a `dyn.Value`. This representation is functionally equivalent to Go's `any` (it is variadic) and allows us to capture metadata associated with a value, such as where it was defined (e.g. file, line, and column). It also allows us to represent Go's zero values properly (e.g. empty string, integer equal to 0, or boolean false). Using this representation allows us to let the configuration model deviate from the typed structure we have been relying on so far (`config.Root`). We need to deviate from these types when using variables for fields that are not a string themselves. For example, using `${var.num_workers}` for an integer `workers` field was impossible until now (though not implemented in this change). The loader for a `dyn.Value` includes functionality to capture any and all type mismatches between the user-defined configuration and the expected types. These mismatches can be surfaced as validation errors in future PRs. Given that many mutators expect the typed struct to be the source of truth, this change converts between the dynamic representation and the typed representation on mutator entry and exit. Existing mutators can continue to modify the typed representation and these modifications are reflected in the dynamic representation (see `MarkMutatorEntry` and `MarkMutatorExit` in `bundle/config/root.go`). Required changes included in this change: * The existing interpolation package is removed in favor of `libs/dyn/dynvar`. * Functionality to merge job clusters, job tasks, and pipeline clusters are now all broken out into their own mutators. To be implemented later: * Allow variable references for non-string types. * Surface diagnostics about the configuration provided by the user in the validation output. * Some mutators use a resource's configuration file path to resolve related relative paths. These depend on `bundle/config/paths.Path` being set and populated through `ConfigureConfigFilePath`. Instead, they should interact with the dynamically typed configuration directly. Doing this also unlocks being able to differentiate different base paths used within a job (e.g. a task override with a relative path defined in a directory other than the base job). ## Tests * Existing unit tests pass (some have been modified to accommodate) * Integration tests pass
2024-02-16 19:41:58 +00:00
}
func ResolveVariableReferences(prefixes ...string) bundle.Mutator {
return &resolveVariableReferences{prefixes: prefixes, lookupFn: lookup}
}
func ResolveVariableReferencesInLookup() bundle.Mutator {
return &resolveVariableReferences{prefixes: []string{
"bundle",
"workspace",
"variables",
}, pattern: dyn.NewPattern(dyn.Key("variables"), dyn.AnyKey(), dyn.Key("lookup")), lookupFn: lookupForVariables}
}
func ResolveVariableReferencesInComplexVariables() bundle.Mutator {
return &resolveVariableReferences{
prefixes: []string{
"bundle",
"workspace",
"variables",
},
pattern: dyn.NewPattern(dyn.Key("variables"), dyn.AnyKey(), dyn.Key("value")),
lookupFn: lookupForComplexVariables,
skipFn: skipResolvingInNonComplexVariables,
}
}
func lookup(v dyn.Value, path dyn.Path) (dyn.Value, error) {
// Future opportunity: if we lookup this path in both the given root
// and the synthesized root, we know if it was explicitly set or implied to be empty.
// Then we can emit a warning if it was not explicitly set.
return dyn.GetByPath(v, path)
}
func lookupForComplexVariables(v dyn.Value, path dyn.Path) (dyn.Value, error) {
if path[0].Key() != "variables" {
return lookup(v, path)
}
varV, err := dyn.GetByPath(v, path[:len(path)-1])
if err != nil {
return dyn.InvalidValue, err
}
var vv variable.Variable
err = convert.ToTyped(&vv, varV)
if err != nil {
return dyn.InvalidValue, err
}
if vv.Type == variable.VariableTypeComplex {
return dyn.InvalidValue, fmt.Errorf("complex variables cannot contain references to another complex variables")
}
return lookup(v, path)
}
func skipResolvingInNonComplexVariables(v dyn.Value) bool {
switch v.Kind() {
case dyn.KindMap, dyn.KindSequence:
return false
default:
return true
}
}
func lookupForVariables(v dyn.Value, path dyn.Path) (dyn.Value, error) {
if path[0].Key() != "variables" {
return lookup(v, path)
}
varV, err := dyn.GetByPath(v, path[:len(path)-1])
if err != nil {
return dyn.InvalidValue, err
}
var vv variable.Variable
err = convert.ToTyped(&vv, varV)
if err != nil {
return dyn.InvalidValue, err
}
if vv.Lookup != nil && vv.Lookup.String() != "" {
return dyn.InvalidValue, fmt.Errorf("lookup variables cannot contain references to another lookup variables")
}
return lookup(v, path)
Use dynamic configuration model in bundles (#1098) ## Changes This is a fundamental change to how we load and process bundle configuration. We now depend on the configuration being represented as a `dyn.Value`. This representation is functionally equivalent to Go's `any` (it is variadic) and allows us to capture metadata associated with a value, such as where it was defined (e.g. file, line, and column). It also allows us to represent Go's zero values properly (e.g. empty string, integer equal to 0, or boolean false). Using this representation allows us to let the configuration model deviate from the typed structure we have been relying on so far (`config.Root`). We need to deviate from these types when using variables for fields that are not a string themselves. For example, using `${var.num_workers}` for an integer `workers` field was impossible until now (though not implemented in this change). The loader for a `dyn.Value` includes functionality to capture any and all type mismatches between the user-defined configuration and the expected types. These mismatches can be surfaced as validation errors in future PRs. Given that many mutators expect the typed struct to be the source of truth, this change converts between the dynamic representation and the typed representation on mutator entry and exit. Existing mutators can continue to modify the typed representation and these modifications are reflected in the dynamic representation (see `MarkMutatorEntry` and `MarkMutatorExit` in `bundle/config/root.go`). Required changes included in this change: * The existing interpolation package is removed in favor of `libs/dyn/dynvar`. * Functionality to merge job clusters, job tasks, and pipeline clusters are now all broken out into their own mutators. To be implemented later: * Allow variable references for non-string types. * Surface diagnostics about the configuration provided by the user in the validation output. * Some mutators use a resource's configuration file path to resolve related relative paths. These depend on `bundle/config/paths.Path` being set and populated through `ConfigureConfigFilePath`. Instead, they should interact with the dynamically typed configuration directly. Doing this also unlocks being able to differentiate different base paths used within a job (e.g. a task override with a relative path defined in a directory other than the base job). ## Tests * Existing unit tests pass (some have been modified to accommodate) * Integration tests pass
2024-02-16 19:41:58 +00:00
}
func (*resolveVariableReferences) Name() string {
return "ResolveVariableReferences"
}
func (m *resolveVariableReferences) Validate(ctx context.Context, b *bundle.Bundle) error {
return nil
}
func (m *resolveVariableReferences) Apply(ctx context.Context, b *bundle.Bundle) diag.Diagnostics {
Use dynamic configuration model in bundles (#1098) ## Changes This is a fundamental change to how we load and process bundle configuration. We now depend on the configuration being represented as a `dyn.Value`. This representation is functionally equivalent to Go's `any` (it is variadic) and allows us to capture metadata associated with a value, such as where it was defined (e.g. file, line, and column). It also allows us to represent Go's zero values properly (e.g. empty string, integer equal to 0, or boolean false). Using this representation allows us to let the configuration model deviate from the typed structure we have been relying on so far (`config.Root`). We need to deviate from these types when using variables for fields that are not a string themselves. For example, using `${var.num_workers}` for an integer `workers` field was impossible until now (though not implemented in this change). The loader for a `dyn.Value` includes functionality to capture any and all type mismatches between the user-defined configuration and the expected types. These mismatches can be surfaced as validation errors in future PRs. Given that many mutators expect the typed struct to be the source of truth, this change converts between the dynamic representation and the typed representation on mutator entry and exit. Existing mutators can continue to modify the typed representation and these modifications are reflected in the dynamic representation (see `MarkMutatorEntry` and `MarkMutatorExit` in `bundle/config/root.go`). Required changes included in this change: * The existing interpolation package is removed in favor of `libs/dyn/dynvar`. * Functionality to merge job clusters, job tasks, and pipeline clusters are now all broken out into their own mutators. To be implemented later: * Allow variable references for non-string types. * Surface diagnostics about the configuration provided by the user in the validation output. * Some mutators use a resource's configuration file path to resolve related relative paths. These depend on `bundle/config/paths.Path` being set and populated through `ConfigureConfigFilePath`. Instead, they should interact with the dynamically typed configuration directly. Doing this also unlocks being able to differentiate different base paths used within a job (e.g. a task override with a relative path defined in a directory other than the base job). ## Tests * Existing unit tests pass (some have been modified to accommodate) * Integration tests pass
2024-02-16 19:41:58 +00:00
prefixes := make([]dyn.Path, len(m.prefixes))
for i, prefix := range m.prefixes {
prefixes[i] = dyn.MustPathFromString(prefix)
}
// The path ${var.foo} is a shorthand for ${variables.foo.value}.
// We rewrite it here to make the resolution logic simpler.
varPath := dyn.NewPath(dyn.Key("var"))
var diags diag.Diagnostics
err := b.Config.Mutate(func(root dyn.Value) (dyn.Value, error) {
Use dynamic configuration model in bundles (#1098) ## Changes This is a fundamental change to how we load and process bundle configuration. We now depend on the configuration being represented as a `dyn.Value`. This representation is functionally equivalent to Go's `any` (it is variadic) and allows us to capture metadata associated with a value, such as where it was defined (e.g. file, line, and column). It also allows us to represent Go's zero values properly (e.g. empty string, integer equal to 0, or boolean false). Using this representation allows us to let the configuration model deviate from the typed structure we have been relying on so far (`config.Root`). We need to deviate from these types when using variables for fields that are not a string themselves. For example, using `${var.num_workers}` for an integer `workers` field was impossible until now (though not implemented in this change). The loader for a `dyn.Value` includes functionality to capture any and all type mismatches between the user-defined configuration and the expected types. These mismatches can be surfaced as validation errors in future PRs. Given that many mutators expect the typed struct to be the source of truth, this change converts between the dynamic representation and the typed representation on mutator entry and exit. Existing mutators can continue to modify the typed representation and these modifications are reflected in the dynamic representation (see `MarkMutatorEntry` and `MarkMutatorExit` in `bundle/config/root.go`). Required changes included in this change: * The existing interpolation package is removed in favor of `libs/dyn/dynvar`. * Functionality to merge job clusters, job tasks, and pipeline clusters are now all broken out into their own mutators. To be implemented later: * Allow variable references for non-string types. * Surface diagnostics about the configuration provided by the user in the validation output. * Some mutators use a resource's configuration file path to resolve related relative paths. These depend on `bundle/config/paths.Path` being set and populated through `ConfigureConfigFilePath`. Instead, they should interact with the dynamically typed configuration directly. Doing this also unlocks being able to differentiate different base paths used within a job (e.g. a task override with a relative path defined in a directory other than the base job). ## Tests * Existing unit tests pass (some have been modified to accommodate) * Integration tests pass
2024-02-16 19:41:58 +00:00
// Synthesize a copy of the root that has all fields that are present in the type
// but not set in the dynamic value set to their corresponding empty value.
// This enables users to interpolate variable references to fields that haven't
// been explicitly set in the dynamic value.
//
// For example: ${bundle.git.origin_url} should resolve to an empty string
// if a bundle isn't located in a Git repository (yet).
//
// This is consistent with the behavior prior to using the dynamic value system.
//
// We can ignore the diagnostics return value because we know that the dynamic value
Use dynamic configuration model in bundles (#1098) ## Changes This is a fundamental change to how we load and process bundle configuration. We now depend on the configuration being represented as a `dyn.Value`. This representation is functionally equivalent to Go's `any` (it is variadic) and allows us to capture metadata associated with a value, such as where it was defined (e.g. file, line, and column). It also allows us to represent Go's zero values properly (e.g. empty string, integer equal to 0, or boolean false). Using this representation allows us to let the configuration model deviate from the typed structure we have been relying on so far (`config.Root`). We need to deviate from these types when using variables for fields that are not a string themselves. For example, using `${var.num_workers}` for an integer `workers` field was impossible until now (though not implemented in this change). The loader for a `dyn.Value` includes functionality to capture any and all type mismatches between the user-defined configuration and the expected types. These mismatches can be surfaced as validation errors in future PRs. Given that many mutators expect the typed struct to be the source of truth, this change converts between the dynamic representation and the typed representation on mutator entry and exit. Existing mutators can continue to modify the typed representation and these modifications are reflected in the dynamic representation (see `MarkMutatorEntry` and `MarkMutatorExit` in `bundle/config/root.go`). Required changes included in this change: * The existing interpolation package is removed in favor of `libs/dyn/dynvar`. * Functionality to merge job clusters, job tasks, and pipeline clusters are now all broken out into their own mutators. To be implemented later: * Allow variable references for non-string types. * Surface diagnostics about the configuration provided by the user in the validation output. * Some mutators use a resource's configuration file path to resolve related relative paths. These depend on `bundle/config/paths.Path` being set and populated through `ConfigureConfigFilePath`. Instead, they should interact with the dynamically typed configuration directly. Doing this also unlocks being able to differentiate different base paths used within a job (e.g. a task override with a relative path defined in a directory other than the base job). ## Tests * Existing unit tests pass (some have been modified to accommodate) * Integration tests pass
2024-02-16 19:41:58 +00:00
// has already been normalized when it was first loaded from the configuration file.
//
normalized, _ := convert.Normalize(b.Config, root, convert.IncludeMissingFields)
// If the pattern is nil, we resolve references in the entire configuration.
root, err := dyn.MapByPattern(root, m.pattern, func(p dyn.Path, v dyn.Value) (dyn.Value, error) {
// Resolve variable references in all values.
return dynvar.Resolve(v, func(path dyn.Path) (dyn.Value, error) {
// Rewrite the shorthand path ${var.foo} into ${variables.foo.value}.
if path.HasPrefix(varPath) {
newPath := dyn.NewPath(
dyn.Key("variables"),
path[1],
dyn.Key("value"),
)
if len(path) > 2 {
newPath = newPath.Append(path[2:]...)
}
path = newPath
}
// Perform resolution only if the path starts with one of the specified prefixes.
for _, prefix := range prefixes {
if path.HasPrefix(prefix) {
// Skip resolution if there is a skip function and it returns true.
if m.skipFn != nil && m.skipFn(v) {
return dyn.InvalidValue, dynvar.ErrSkipResolution
}
return m.lookupFn(normalized, path)
}
Use dynamic configuration model in bundles (#1098) ## Changes This is a fundamental change to how we load and process bundle configuration. We now depend on the configuration being represented as a `dyn.Value`. This representation is functionally equivalent to Go's `any` (it is variadic) and allows us to capture metadata associated with a value, such as where it was defined (e.g. file, line, and column). It also allows us to represent Go's zero values properly (e.g. empty string, integer equal to 0, or boolean false). Using this representation allows us to let the configuration model deviate from the typed structure we have been relying on so far (`config.Root`). We need to deviate from these types when using variables for fields that are not a string themselves. For example, using `${var.num_workers}` for an integer `workers` field was impossible until now (though not implemented in this change). The loader for a `dyn.Value` includes functionality to capture any and all type mismatches between the user-defined configuration and the expected types. These mismatches can be surfaced as validation errors in future PRs. Given that many mutators expect the typed struct to be the source of truth, this change converts between the dynamic representation and the typed representation on mutator entry and exit. Existing mutators can continue to modify the typed representation and these modifications are reflected in the dynamic representation (see `MarkMutatorEntry` and `MarkMutatorExit` in `bundle/config/root.go`). Required changes included in this change: * The existing interpolation package is removed in favor of `libs/dyn/dynvar`. * Functionality to merge job clusters, job tasks, and pipeline clusters are now all broken out into their own mutators. To be implemented later: * Allow variable references for non-string types. * Surface diagnostics about the configuration provided by the user in the validation output. * Some mutators use a resource's configuration file path to resolve related relative paths. These depend on `bundle/config/paths.Path` being set and populated through `ConfigureConfigFilePath`. Instead, they should interact with the dynamically typed configuration directly. Doing this also unlocks being able to differentiate different base paths used within a job (e.g. a task override with a relative path defined in a directory other than the base job). ## Tests * Existing unit tests pass (some have been modified to accommodate) * Integration tests pass
2024-02-16 19:41:58 +00:00
}
return dyn.InvalidValue, dynvar.ErrSkipResolution
})
Use dynamic configuration model in bundles (#1098) ## Changes This is a fundamental change to how we load and process bundle configuration. We now depend on the configuration being represented as a `dyn.Value`. This representation is functionally equivalent to Go's `any` (it is variadic) and allows us to capture metadata associated with a value, such as where it was defined (e.g. file, line, and column). It also allows us to represent Go's zero values properly (e.g. empty string, integer equal to 0, or boolean false). Using this representation allows us to let the configuration model deviate from the typed structure we have been relying on so far (`config.Root`). We need to deviate from these types when using variables for fields that are not a string themselves. For example, using `${var.num_workers}` for an integer `workers` field was impossible until now (though not implemented in this change). The loader for a `dyn.Value` includes functionality to capture any and all type mismatches between the user-defined configuration and the expected types. These mismatches can be surfaced as validation errors in future PRs. Given that many mutators expect the typed struct to be the source of truth, this change converts between the dynamic representation and the typed representation on mutator entry and exit. Existing mutators can continue to modify the typed representation and these modifications are reflected in the dynamic representation (see `MarkMutatorEntry` and `MarkMutatorExit` in `bundle/config/root.go`). Required changes included in this change: * The existing interpolation package is removed in favor of `libs/dyn/dynvar`. * Functionality to merge job clusters, job tasks, and pipeline clusters are now all broken out into their own mutators. To be implemented later: * Allow variable references for non-string types. * Surface diagnostics about the configuration provided by the user in the validation output. * Some mutators use a resource's configuration file path to resolve related relative paths. These depend on `bundle/config/paths.Path` being set and populated through `ConfigureConfigFilePath`. Instead, they should interact with the dynamically typed configuration directly. Doing this also unlocks being able to differentiate different base paths used within a job (e.g. a task override with a relative path defined in a directory other than the base job). ## Tests * Existing unit tests pass (some have been modified to accommodate) * Integration tests pass
2024-02-16 19:41:58 +00:00
})
if err != nil {
return dyn.InvalidValue, err
}
// Normalize the result because variable resolution may have been applied to non-string fields.
// For example, a variable reference may have been resolved to a integer.
root, normaliseDiags := convert.Normalize(b.Config, root)
diags = diags.Extend(normaliseDiags)
return root, nil
Use dynamic configuration model in bundles (#1098) ## Changes This is a fundamental change to how we load and process bundle configuration. We now depend on the configuration being represented as a `dyn.Value`. This representation is functionally equivalent to Go's `any` (it is variadic) and allows us to capture metadata associated with a value, such as where it was defined (e.g. file, line, and column). It also allows us to represent Go's zero values properly (e.g. empty string, integer equal to 0, or boolean false). Using this representation allows us to let the configuration model deviate from the typed structure we have been relying on so far (`config.Root`). We need to deviate from these types when using variables for fields that are not a string themselves. For example, using `${var.num_workers}` for an integer `workers` field was impossible until now (though not implemented in this change). The loader for a `dyn.Value` includes functionality to capture any and all type mismatches between the user-defined configuration and the expected types. These mismatches can be surfaced as validation errors in future PRs. Given that many mutators expect the typed struct to be the source of truth, this change converts between the dynamic representation and the typed representation on mutator entry and exit. Existing mutators can continue to modify the typed representation and these modifications are reflected in the dynamic representation (see `MarkMutatorEntry` and `MarkMutatorExit` in `bundle/config/root.go`). Required changes included in this change: * The existing interpolation package is removed in favor of `libs/dyn/dynvar`. * Functionality to merge job clusters, job tasks, and pipeline clusters are now all broken out into their own mutators. To be implemented later: * Allow variable references for non-string types. * Surface diagnostics about the configuration provided by the user in the validation output. * Some mutators use a resource's configuration file path to resolve related relative paths. These depend on `bundle/config/paths.Path` being set and populated through `ConfigureConfigFilePath`. Instead, they should interact with the dynamically typed configuration directly. Doing this also unlocks being able to differentiate different base paths used within a job (e.g. a task override with a relative path defined in a directory other than the base job). ## Tests * Existing unit tests pass (some have been modified to accommodate) * Integration tests pass
2024-02-16 19:41:58 +00:00
})
if err != nil {
diags = diags.Extend(diag.FromErr(err))
}
return diags
Use dynamic configuration model in bundles (#1098) ## Changes This is a fundamental change to how we load and process bundle configuration. We now depend on the configuration being represented as a `dyn.Value`. This representation is functionally equivalent to Go's `any` (it is variadic) and allows us to capture metadata associated with a value, such as where it was defined (e.g. file, line, and column). It also allows us to represent Go's zero values properly (e.g. empty string, integer equal to 0, or boolean false). Using this representation allows us to let the configuration model deviate from the typed structure we have been relying on so far (`config.Root`). We need to deviate from these types when using variables for fields that are not a string themselves. For example, using `${var.num_workers}` for an integer `workers` field was impossible until now (though not implemented in this change). The loader for a `dyn.Value` includes functionality to capture any and all type mismatches between the user-defined configuration and the expected types. These mismatches can be surfaced as validation errors in future PRs. Given that many mutators expect the typed struct to be the source of truth, this change converts between the dynamic representation and the typed representation on mutator entry and exit. Existing mutators can continue to modify the typed representation and these modifications are reflected in the dynamic representation (see `MarkMutatorEntry` and `MarkMutatorExit` in `bundle/config/root.go`). Required changes included in this change: * The existing interpolation package is removed in favor of `libs/dyn/dynvar`. * Functionality to merge job clusters, job tasks, and pipeline clusters are now all broken out into their own mutators. To be implemented later: * Allow variable references for non-string types. * Surface diagnostics about the configuration provided by the user in the validation output. * Some mutators use a resource's configuration file path to resolve related relative paths. These depend on `bundle/config/paths.Path` being set and populated through `ConfigureConfigFilePath`. Instead, they should interact with the dynamically typed configuration directly. Doing this also unlocks being able to differentiate different base paths used within a job (e.g. a task override with a relative path defined in a directory other than the base job). ## Tests * Existing unit tests pass (some have been modified to accommodate) * Integration tests pass
2024-02-16 19:41:58 +00:00
}