databricks-cli/bundle/config/mutator/process_target_mode_test.go

283 lines
10 KiB
Go
Raw Normal View History

package mutator
Add development runs (#522) This implements the "development run" functionality that we desire for DABs in the workspace / IDE. ## bundle.yml changes In bundle.yml, there should be a "dev" environment that is marked as `mode: debug`: ``` environments: dev: default: true mode: development # future accepted values might include pull_request, production ``` Setting `mode` to `development` indicates that this environment is used just for running things for development. This results in several changes to deployed assets: * All assets will get '[dev]' in their name and will get a 'dev' tag * All assets will be hidden from the list of assets (future work; e.g. for jobs we would have a special job_type that hides it from the list) * All deployed assets will be ephemeral (future work, we need some form of garbage collection) * Pipelines will be marked as 'development: true' * Jobs can run on development compute through the `--compute` parameter in the CLI * Jobs get their schedule / triggers paused * Jobs get concurrent runs (it's really annoying if your runs get skipped because the last run was still in progress) Other accepted values for `mode` are `default` (which does nothing) and `pull-request` (which is reserved for future use). ## CLI changes To run a single job called "shark_sighting" on existing compute, use the following commands: ``` $ databricks bundle deploy --compute 0617-201942-9yd9g8ix $ databricks bundle run shark_sighting ``` which would deploy and run a job called "[dev] shark_sightings" on the compute provided. Note that `--compute` is not accepted in production environments, so we show an error if `mode: development` is not used. The `run --deploy` command offers a convenient shorthand for the common combination of deploying & running: ``` $ export DATABRICKS_COMPUTE=0617-201942-9yd9g8ix $ bundle run --deploy shark_sightings ``` The `--deploy` addition isn't really essential and I welcome feedback 🤔 I played with the idea of a "debug" or "dev" command but that seemed to only make the option space even broader for users. The above could work well with an IDE or workspace that automatically sets the target compute. One more thing I added is`run --no-wait` can now be used to run something without waiting for it to be completed (useful for IDE-like environments that can display progress themselves). ``` $ bundle run --deploy shark_sightings --no-wait ```
2023-07-12 06:51:54 +00:00
import (
"context"
"reflect"
"strings"
Add development runs (#522) This implements the "development run" functionality that we desire for DABs in the workspace / IDE. ## bundle.yml changes In bundle.yml, there should be a "dev" environment that is marked as `mode: debug`: ``` environments: dev: default: true mode: development # future accepted values might include pull_request, production ``` Setting `mode` to `development` indicates that this environment is used just for running things for development. This results in several changes to deployed assets: * All assets will get '[dev]' in their name and will get a 'dev' tag * All assets will be hidden from the list of assets (future work; e.g. for jobs we would have a special job_type that hides it from the list) * All deployed assets will be ephemeral (future work, we need some form of garbage collection) * Pipelines will be marked as 'development: true' * Jobs can run on development compute through the `--compute` parameter in the CLI * Jobs get their schedule / triggers paused * Jobs get concurrent runs (it's really annoying if your runs get skipped because the last run was still in progress) Other accepted values for `mode` are `default` (which does nothing) and `pull-request` (which is reserved for future use). ## CLI changes To run a single job called "shark_sighting" on existing compute, use the following commands: ``` $ databricks bundle deploy --compute 0617-201942-9yd9g8ix $ databricks bundle run shark_sighting ``` which would deploy and run a job called "[dev] shark_sightings" on the compute provided. Note that `--compute` is not accepted in production environments, so we show an error if `mode: development` is not used. The `run --deploy` command offers a convenient shorthand for the common combination of deploying & running: ``` $ export DATABRICKS_COMPUTE=0617-201942-9yd9g8ix $ bundle run --deploy shark_sightings ``` The `--deploy` addition isn't really essential and I welcome feedback 🤔 I played with the idea of a "debug" or "dev" command but that seemed to only make the option space even broader for users. The above could work well with an IDE or workspace that automatically sets the target compute. One more thing I added is`run --no-wait` can now be used to run something without waiting for it to be completed (useful for IDE-like environments that can display progress themselves). ``` $ bundle run --deploy shark_sightings --no-wait ```
2023-07-12 06:51:54 +00:00
"testing"
"github.com/databricks/cli/bundle"
"github.com/databricks/cli/bundle/config"
"github.com/databricks/cli/bundle/config/resources"
"github.com/databricks/cli/libs/tags"
sdkconfig "github.com/databricks/databricks-sdk-go/config"
"github.com/databricks/databricks-sdk-go/service/catalog"
"github.com/databricks/databricks-sdk-go/service/iam"
Add development runs (#522) This implements the "development run" functionality that we desire for DABs in the workspace / IDE. ## bundle.yml changes In bundle.yml, there should be a "dev" environment that is marked as `mode: debug`: ``` environments: dev: default: true mode: development # future accepted values might include pull_request, production ``` Setting `mode` to `development` indicates that this environment is used just for running things for development. This results in several changes to deployed assets: * All assets will get '[dev]' in their name and will get a 'dev' tag * All assets will be hidden from the list of assets (future work; e.g. for jobs we would have a special job_type that hides it from the list) * All deployed assets will be ephemeral (future work, we need some form of garbage collection) * Pipelines will be marked as 'development: true' * Jobs can run on development compute through the `--compute` parameter in the CLI * Jobs get their schedule / triggers paused * Jobs get concurrent runs (it's really annoying if your runs get skipped because the last run was still in progress) Other accepted values for `mode` are `default` (which does nothing) and `pull-request` (which is reserved for future use). ## CLI changes To run a single job called "shark_sighting" on existing compute, use the following commands: ``` $ databricks bundle deploy --compute 0617-201942-9yd9g8ix $ databricks bundle run shark_sighting ``` which would deploy and run a job called "[dev] shark_sightings" on the compute provided. Note that `--compute` is not accepted in production environments, so we show an error if `mode: development` is not used. The `run --deploy` command offers a convenient shorthand for the common combination of deploying & running: ``` $ export DATABRICKS_COMPUTE=0617-201942-9yd9g8ix $ bundle run --deploy shark_sightings ``` The `--deploy` addition isn't really essential and I welcome feedback 🤔 I played with the idea of a "debug" or "dev" command but that seemed to only make the option space even broader for users. The above could work well with an IDE or workspace that automatically sets the target compute. One more thing I added is`run --no-wait` can now be used to run something without waiting for it to be completed (useful for IDE-like environments that can display progress themselves). ``` $ bundle run --deploy shark_sightings --no-wait ```
2023-07-12 06:51:54 +00:00
"github.com/databricks/databricks-sdk-go/service/jobs"
"github.com/databricks/databricks-sdk-go/service/ml"
"github.com/databricks/databricks-sdk-go/service/pipelines"
"github.com/databricks/databricks-sdk-go/service/serving"
Add development runs (#522) This implements the "development run" functionality that we desire for DABs in the workspace / IDE. ## bundle.yml changes In bundle.yml, there should be a "dev" environment that is marked as `mode: debug`: ``` environments: dev: default: true mode: development # future accepted values might include pull_request, production ``` Setting `mode` to `development` indicates that this environment is used just for running things for development. This results in several changes to deployed assets: * All assets will get '[dev]' in their name and will get a 'dev' tag * All assets will be hidden from the list of assets (future work; e.g. for jobs we would have a special job_type that hides it from the list) * All deployed assets will be ephemeral (future work, we need some form of garbage collection) * Pipelines will be marked as 'development: true' * Jobs can run on development compute through the `--compute` parameter in the CLI * Jobs get their schedule / triggers paused * Jobs get concurrent runs (it's really annoying if your runs get skipped because the last run was still in progress) Other accepted values for `mode` are `default` (which does nothing) and `pull-request` (which is reserved for future use). ## CLI changes To run a single job called "shark_sighting" on existing compute, use the following commands: ``` $ databricks bundle deploy --compute 0617-201942-9yd9g8ix $ databricks bundle run shark_sighting ``` which would deploy and run a job called "[dev] shark_sightings" on the compute provided. Note that `--compute` is not accepted in production environments, so we show an error if `mode: development` is not used. The `run --deploy` command offers a convenient shorthand for the common combination of deploying & running: ``` $ export DATABRICKS_COMPUTE=0617-201942-9yd9g8ix $ bundle run --deploy shark_sightings ``` The `--deploy` addition isn't really essential and I welcome feedback 🤔 I played with the idea of a "debug" or "dev" command but that seemed to only make the option space even broader for users. The above could work well with an IDE or workspace that automatically sets the target compute. One more thing I added is`run --no-wait` can now be used to run something without waiting for it to be completed (useful for IDE-like environments that can display progress themselves). ``` $ bundle run --deploy shark_sightings --no-wait ```
2023-07-12 06:51:54 +00:00
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
func mockBundle(mode config.Mode) *bundle.Bundle {
return &bundle.Bundle{
Add development runs (#522) This implements the "development run" functionality that we desire for DABs in the workspace / IDE. ## bundle.yml changes In bundle.yml, there should be a "dev" environment that is marked as `mode: debug`: ``` environments: dev: default: true mode: development # future accepted values might include pull_request, production ``` Setting `mode` to `development` indicates that this environment is used just for running things for development. This results in several changes to deployed assets: * All assets will get '[dev]' in their name and will get a 'dev' tag * All assets will be hidden from the list of assets (future work; e.g. for jobs we would have a special job_type that hides it from the list) * All deployed assets will be ephemeral (future work, we need some form of garbage collection) * Pipelines will be marked as 'development: true' * Jobs can run on development compute through the `--compute` parameter in the CLI * Jobs get their schedule / triggers paused * Jobs get concurrent runs (it's really annoying if your runs get skipped because the last run was still in progress) Other accepted values for `mode` are `default` (which does nothing) and `pull-request` (which is reserved for future use). ## CLI changes To run a single job called "shark_sighting" on existing compute, use the following commands: ``` $ databricks bundle deploy --compute 0617-201942-9yd9g8ix $ databricks bundle run shark_sighting ``` which would deploy and run a job called "[dev] shark_sightings" on the compute provided. Note that `--compute` is not accepted in production environments, so we show an error if `mode: development` is not used. The `run --deploy` command offers a convenient shorthand for the common combination of deploying & running: ``` $ export DATABRICKS_COMPUTE=0617-201942-9yd9g8ix $ bundle run --deploy shark_sightings ``` The `--deploy` addition isn't really essential and I welcome feedback 🤔 I played with the idea of a "debug" or "dev" command but that seemed to only make the option space even broader for users. The above could work well with an IDE or workspace that automatically sets the target compute. One more thing I added is`run --no-wait` can now be used to run something without waiting for it to be completed (useful for IDE-like environments that can display progress themselves). ``` $ bundle run --deploy shark_sightings --no-wait ```
2023-07-12 06:51:54 +00:00
Config: config.Root{
Bundle: config.Bundle{
Mode: mode,
Add validation for Git settings in bundles (#578) ## Changes This checks whether the Git settings are consistent with the actual Git state of a source directory. (This PR adds to https://github.com/databricks/cli/pull/577.) Previously, we would silently let users configure their Git branch to e.g. `main` and deploy with that metadata even if they were actually on a different branch. With these changes, the following config would result in an error when deployed from any other branch than `main`: ``` bundle: name: example workspace: git: branch: main environments: ... ``` > not on the right Git branch: > expected according to configuration: main > actual: my-feature-branch It's not very useful to set the same branch for all environments, though. For development, it's better to just let the CLI auto-detect the right branch. Therefore, it's now possible to set the branch just for a single environment: ``` bundle: name: example 2 environments: development: default: true production: # production can only be deployed from the 'main' branch git: branch: main ``` Adding to that, the `mode: production` option actually checks that users explicitly set the Git branch as seen above. Setting that branch helps avoid mistakes, where someone accidentally deploys to production from the wrong branch. (I could see us offering an escape hatch for that in the future.) # Testing Manual testing to validate the experience and error messages. Automated unit tests. --------- Co-authored-by: Fabian Jakobs <fabian.jakobs@databricks.com>
2023-07-30 12:44:33 +00:00
Git: config.Git{
OriginURL: "http://origin",
Branch: "main",
},
},
Workspace: config.Workspace{
CurrentUser: &config.User{
ShortName: "lennart",
User: &iam.User{
UserName: "lennart@company.com",
Id: "1",
},
},
StatePath: "/Users/lennart@company.com/.bundle/x/y/state",
ArtifactsPath: "/Users/lennart@company.com/.bundle/x/y/artifacts",
FilesPath: "/Users/lennart@company.com/.bundle/x/y/files",
Add development runs (#522) This implements the "development run" functionality that we desire for DABs in the workspace / IDE. ## bundle.yml changes In bundle.yml, there should be a "dev" environment that is marked as `mode: debug`: ``` environments: dev: default: true mode: development # future accepted values might include pull_request, production ``` Setting `mode` to `development` indicates that this environment is used just for running things for development. This results in several changes to deployed assets: * All assets will get '[dev]' in their name and will get a 'dev' tag * All assets will be hidden from the list of assets (future work; e.g. for jobs we would have a special job_type that hides it from the list) * All deployed assets will be ephemeral (future work, we need some form of garbage collection) * Pipelines will be marked as 'development: true' * Jobs can run on development compute through the `--compute` parameter in the CLI * Jobs get their schedule / triggers paused * Jobs get concurrent runs (it's really annoying if your runs get skipped because the last run was still in progress) Other accepted values for `mode` are `default` (which does nothing) and `pull-request` (which is reserved for future use). ## CLI changes To run a single job called "shark_sighting" on existing compute, use the following commands: ``` $ databricks bundle deploy --compute 0617-201942-9yd9g8ix $ databricks bundle run shark_sighting ``` which would deploy and run a job called "[dev] shark_sightings" on the compute provided. Note that `--compute` is not accepted in production environments, so we show an error if `mode: development` is not used. The `run --deploy` command offers a convenient shorthand for the common combination of deploying & running: ``` $ export DATABRICKS_COMPUTE=0617-201942-9yd9g8ix $ bundle run --deploy shark_sightings ``` The `--deploy` addition isn't really essential and I welcome feedback 🤔 I played with the idea of a "debug" or "dev" command but that seemed to only make the option space even broader for users. The above could work well with an IDE or workspace that automatically sets the target compute. One more thing I added is`run --no-wait` can now be used to run something without waiting for it to be completed (useful for IDE-like environments that can display progress themselves). ``` $ bundle run --deploy shark_sightings --no-wait ```
2023-07-12 06:51:54 +00:00
},
Resources: config.Resources{
Jobs: map[string]*resources.Job{
"job1": {
JobSettings: &jobs.JobSettings{
Name: "job1",
Schedule: &jobs.CronSchedule{
QuartzCronExpression: "* * * * *",
},
},
},
"job2": {
JobSettings: &jobs.JobSettings{
Name: "job2",
Schedule: &jobs.CronSchedule{
QuartzCronExpression: "* * * * *",
PauseStatus: jobs.PauseStatusUnpaused,
},
},
},
Add development runs (#522) This implements the "development run" functionality that we desire for DABs in the workspace / IDE. ## bundle.yml changes In bundle.yml, there should be a "dev" environment that is marked as `mode: debug`: ``` environments: dev: default: true mode: development # future accepted values might include pull_request, production ``` Setting `mode` to `development` indicates that this environment is used just for running things for development. This results in several changes to deployed assets: * All assets will get '[dev]' in their name and will get a 'dev' tag * All assets will be hidden from the list of assets (future work; e.g. for jobs we would have a special job_type that hides it from the list) * All deployed assets will be ephemeral (future work, we need some form of garbage collection) * Pipelines will be marked as 'development: true' * Jobs can run on development compute through the `--compute` parameter in the CLI * Jobs get their schedule / triggers paused * Jobs get concurrent runs (it's really annoying if your runs get skipped because the last run was still in progress) Other accepted values for `mode` are `default` (which does nothing) and `pull-request` (which is reserved for future use). ## CLI changes To run a single job called "shark_sighting" on existing compute, use the following commands: ``` $ databricks bundle deploy --compute 0617-201942-9yd9g8ix $ databricks bundle run shark_sighting ``` which would deploy and run a job called "[dev] shark_sightings" on the compute provided. Note that `--compute` is not accepted in production environments, so we show an error if `mode: development` is not used. The `run --deploy` command offers a convenient shorthand for the common combination of deploying & running: ``` $ export DATABRICKS_COMPUTE=0617-201942-9yd9g8ix $ bundle run --deploy shark_sightings ``` The `--deploy` addition isn't really essential and I welcome feedback 🤔 I played with the idea of a "debug" or "dev" command but that seemed to only make the option space even broader for users. The above could work well with an IDE or workspace that automatically sets the target compute. One more thing I added is`run --no-wait` can now be used to run something without waiting for it to be completed (useful for IDE-like environments that can display progress themselves). ``` $ bundle run --deploy shark_sightings --no-wait ```
2023-07-12 06:51:54 +00:00
},
Pipelines: map[string]*resources.Pipeline{
"pipeline1": {PipelineSpec: &pipelines.PipelineSpec{Name: "pipeline1"}},
},
Experiments: map[string]*resources.MlflowExperiment{
"experiment1": {Experiment: &ml.Experiment{Name: "/Users/lennart.kats@databricks.com/experiment1"}},
"experiment2": {Experiment: &ml.Experiment{Name: "experiment2"}},
},
Models: map[string]*resources.MlflowModel{
"model1": {Model: &ml.Model{Name: "model1"}},
},
ModelServingEndpoints: map[string]*resources.ModelServingEndpoint{
"servingendpoint1": {CreateServingEndpoint: &serving.CreateServingEndpoint{Name: "servingendpoint1"}},
},
RegisteredModels: map[string]*resources.RegisteredModel{
"registeredmodel1": {CreateRegisteredModelRequest: &catalog.CreateRegisteredModelRequest{Name: "registeredmodel1"}},
},
Add development runs (#522) This implements the "development run" functionality that we desire for DABs in the workspace / IDE. ## bundle.yml changes In bundle.yml, there should be a "dev" environment that is marked as `mode: debug`: ``` environments: dev: default: true mode: development # future accepted values might include pull_request, production ``` Setting `mode` to `development` indicates that this environment is used just for running things for development. This results in several changes to deployed assets: * All assets will get '[dev]' in their name and will get a 'dev' tag * All assets will be hidden from the list of assets (future work; e.g. for jobs we would have a special job_type that hides it from the list) * All deployed assets will be ephemeral (future work, we need some form of garbage collection) * Pipelines will be marked as 'development: true' * Jobs can run on development compute through the `--compute` parameter in the CLI * Jobs get their schedule / triggers paused * Jobs get concurrent runs (it's really annoying if your runs get skipped because the last run was still in progress) Other accepted values for `mode` are `default` (which does nothing) and `pull-request` (which is reserved for future use). ## CLI changes To run a single job called "shark_sighting" on existing compute, use the following commands: ``` $ databricks bundle deploy --compute 0617-201942-9yd9g8ix $ databricks bundle run shark_sighting ``` which would deploy and run a job called "[dev] shark_sightings" on the compute provided. Note that `--compute` is not accepted in production environments, so we show an error if `mode: development` is not used. The `run --deploy` command offers a convenient shorthand for the common combination of deploying & running: ``` $ export DATABRICKS_COMPUTE=0617-201942-9yd9g8ix $ bundle run --deploy shark_sightings ``` The `--deploy` addition isn't really essential and I welcome feedback 🤔 I played with the idea of a "debug" or "dev" command but that seemed to only make the option space even broader for users. The above could work well with an IDE or workspace that automatically sets the target compute. One more thing I added is`run --no-wait` can now be used to run something without waiting for it to be completed (useful for IDE-like environments that can display progress themselves). ``` $ bundle run --deploy shark_sightings --no-wait ```
2023-07-12 06:51:54 +00:00
},
},
// Use AWS implementation for testing.
Tagging: tags.ForCloud(&sdkconfig.Config{
Host: "https://company.cloud.databricks.com",
}),
Add development runs (#522) This implements the "development run" functionality that we desire for DABs in the workspace / IDE. ## bundle.yml changes In bundle.yml, there should be a "dev" environment that is marked as `mode: debug`: ``` environments: dev: default: true mode: development # future accepted values might include pull_request, production ``` Setting `mode` to `development` indicates that this environment is used just for running things for development. This results in several changes to deployed assets: * All assets will get '[dev]' in their name and will get a 'dev' tag * All assets will be hidden from the list of assets (future work; e.g. for jobs we would have a special job_type that hides it from the list) * All deployed assets will be ephemeral (future work, we need some form of garbage collection) * Pipelines will be marked as 'development: true' * Jobs can run on development compute through the `--compute` parameter in the CLI * Jobs get their schedule / triggers paused * Jobs get concurrent runs (it's really annoying if your runs get skipped because the last run was still in progress) Other accepted values for `mode` are `default` (which does nothing) and `pull-request` (which is reserved for future use). ## CLI changes To run a single job called "shark_sighting" on existing compute, use the following commands: ``` $ databricks bundle deploy --compute 0617-201942-9yd9g8ix $ databricks bundle run shark_sighting ``` which would deploy and run a job called "[dev] shark_sightings" on the compute provided. Note that `--compute` is not accepted in production environments, so we show an error if `mode: development` is not used. The `run --deploy` command offers a convenient shorthand for the common combination of deploying & running: ``` $ export DATABRICKS_COMPUTE=0617-201942-9yd9g8ix $ bundle run --deploy shark_sightings ``` The `--deploy` addition isn't really essential and I welcome feedback 🤔 I played with the idea of a "debug" or "dev" command but that seemed to only make the option space even broader for users. The above could work well with an IDE or workspace that automatically sets the target compute. One more thing I added is`run --no-wait` can now be used to run something without waiting for it to be completed (useful for IDE-like environments that can display progress themselves). ``` $ bundle run --deploy shark_sightings --no-wait ```
2023-07-12 06:51:54 +00:00
}
}
Add development runs (#522) This implements the "development run" functionality that we desire for DABs in the workspace / IDE. ## bundle.yml changes In bundle.yml, there should be a "dev" environment that is marked as `mode: debug`: ``` environments: dev: default: true mode: development # future accepted values might include pull_request, production ``` Setting `mode` to `development` indicates that this environment is used just for running things for development. This results in several changes to deployed assets: * All assets will get '[dev]' in their name and will get a 'dev' tag * All assets will be hidden from the list of assets (future work; e.g. for jobs we would have a special job_type that hides it from the list) * All deployed assets will be ephemeral (future work, we need some form of garbage collection) * Pipelines will be marked as 'development: true' * Jobs can run on development compute through the `--compute` parameter in the CLI * Jobs get their schedule / triggers paused * Jobs get concurrent runs (it's really annoying if your runs get skipped because the last run was still in progress) Other accepted values for `mode` are `default` (which does nothing) and `pull-request` (which is reserved for future use). ## CLI changes To run a single job called "shark_sighting" on existing compute, use the following commands: ``` $ databricks bundle deploy --compute 0617-201942-9yd9g8ix $ databricks bundle run shark_sighting ``` which would deploy and run a job called "[dev] shark_sightings" on the compute provided. Note that `--compute` is not accepted in production environments, so we show an error if `mode: development` is not used. The `run --deploy` command offers a convenient shorthand for the common combination of deploying & running: ``` $ export DATABRICKS_COMPUTE=0617-201942-9yd9g8ix $ bundle run --deploy shark_sightings ``` The `--deploy` addition isn't really essential and I welcome feedback 🤔 I played with the idea of a "debug" or "dev" command but that seemed to only make the option space even broader for users. The above could work well with an IDE or workspace that automatically sets the target compute. One more thing I added is`run --no-wait` can now be used to run something without waiting for it to be completed (useful for IDE-like environments that can display progress themselves). ``` $ bundle run --deploy shark_sightings --no-wait ```
2023-07-12 06:51:54 +00:00
func TestProcessTargetModeDevelopment(t *testing.T) {
bundle := mockBundle(config.Development)
m := ProcessTargetMode()
Add development runs (#522) This implements the "development run" functionality that we desire for DABs in the workspace / IDE. ## bundle.yml changes In bundle.yml, there should be a "dev" environment that is marked as `mode: debug`: ``` environments: dev: default: true mode: development # future accepted values might include pull_request, production ``` Setting `mode` to `development` indicates that this environment is used just for running things for development. This results in several changes to deployed assets: * All assets will get '[dev]' in their name and will get a 'dev' tag * All assets will be hidden from the list of assets (future work; e.g. for jobs we would have a special job_type that hides it from the list) * All deployed assets will be ephemeral (future work, we need some form of garbage collection) * Pipelines will be marked as 'development: true' * Jobs can run on development compute through the `--compute` parameter in the CLI * Jobs get their schedule / triggers paused * Jobs get concurrent runs (it's really annoying if your runs get skipped because the last run was still in progress) Other accepted values for `mode` are `default` (which does nothing) and `pull-request` (which is reserved for future use). ## CLI changes To run a single job called "shark_sighting" on existing compute, use the following commands: ``` $ databricks bundle deploy --compute 0617-201942-9yd9g8ix $ databricks bundle run shark_sighting ``` which would deploy and run a job called "[dev] shark_sightings" on the compute provided. Note that `--compute` is not accepted in production environments, so we show an error if `mode: development` is not used. The `run --deploy` command offers a convenient shorthand for the common combination of deploying & running: ``` $ export DATABRICKS_COMPUTE=0617-201942-9yd9g8ix $ bundle run --deploy shark_sightings ``` The `--deploy` addition isn't really essential and I welcome feedback 🤔 I played with the idea of a "debug" or "dev" command but that seemed to only make the option space even broader for users. The above could work well with an IDE or workspace that automatically sets the target compute. One more thing I added is`run --no-wait` can now be used to run something without waiting for it to be completed (useful for IDE-like environments that can display progress themselves). ``` $ bundle run --deploy shark_sightings --no-wait ```
2023-07-12 06:51:54 +00:00
err := m.Apply(context.Background(), bundle)
require.NoError(t, err)
// Job 1
assert.Equal(t, "[dev lennart] job1", bundle.Config.Resources.Jobs["job1"].Name)
assert.Equal(t, bundle.Config.Resources.Jobs["job1"].Tags["dev"], "lennart")
assert.Equal(t, bundle.Config.Resources.Jobs["job1"].Schedule.PauseStatus, jobs.PauseStatusPaused)
// Job 2
assert.Equal(t, "[dev lennart] job2", bundle.Config.Resources.Jobs["job2"].Name)
assert.Equal(t, bundle.Config.Resources.Jobs["job2"].Tags["dev"], "lennart")
assert.Equal(t, bundle.Config.Resources.Jobs["job2"].Schedule.PauseStatus, jobs.PauseStatusUnpaused)
// Pipeline 1
assert.Equal(t, "[dev lennart] pipeline1", bundle.Config.Resources.Pipelines["pipeline1"].Name)
assert.True(t, bundle.Config.Resources.Pipelines["pipeline1"].PipelineSpec.Development)
// Experiment 1
assert.Equal(t, "/Users/lennart.kats@databricks.com/[dev lennart] experiment1", bundle.Config.Resources.Experiments["experiment1"].Name)
assert.Contains(t, bundle.Config.Resources.Experiments["experiment1"].Experiment.Tags, ml.ExperimentTag{Key: "dev", Value: "lennart"})
assert.Equal(t, "dev", bundle.Config.Resources.Experiments["experiment1"].Experiment.Tags[0].Key)
// Experiment 2
assert.Equal(t, "[dev lennart] experiment2", bundle.Config.Resources.Experiments["experiment2"].Name)
assert.Contains(t, bundle.Config.Resources.Experiments["experiment2"].Experiment.Tags, ml.ExperimentTag{Key: "dev", Value: "lennart"})
// Model 1
assert.Equal(t, "[dev lennart] model1", bundle.Config.Resources.Models["model1"].Name)
// Model serving endpoint 1
assert.Equal(t, "dev_lennart_servingendpoint1", bundle.Config.Resources.ModelServingEndpoints["servingendpoint1"].Name)
// Registered model 1
assert.Equal(t, "dev_lennart_registeredmodel1", bundle.Config.Resources.RegisteredModels["registeredmodel1"].Name)
}
func TestProcessTargetModeDevelopmentTagNormalizationForAws(t *testing.T) {
bundle := mockBundle(config.Development)
bundle.Tagging = tags.ForCloud(&sdkconfig.Config{
Host: "https://dbc-XXXXXXXX-YYYY.cloud.databricks.com/",
})
bundle.Config.Workspace.CurrentUser.ShortName = "Héllö wörld?!"
err := ProcessTargetMode().Apply(context.Background(), bundle)
require.NoError(t, err)
// Assert that tag normalization took place.
assert.Equal(t, "Hello world__", bundle.Config.Resources.Jobs["job1"].Tags["dev"])
}
func TestProcessTargetModeDevelopmentTagNormalizationForAzure(t *testing.T) {
bundle := mockBundle(config.Development)
bundle.Tagging = tags.ForCloud(&sdkconfig.Config{
Host: "https://adb-xxx.y.azuredatabricks.net/",
})
bundle.Config.Workspace.CurrentUser.ShortName = "Héllö wörld?!"
err := ProcessTargetMode().Apply(context.Background(), bundle)
require.NoError(t, err)
// Assert that tag normalization took place (Azure allows more characters than AWS).
assert.Equal(t, "Héllö wörld?!", bundle.Config.Resources.Jobs["job1"].Tags["dev"])
}
func TestProcessTargetModeDevelopmentTagNormalizationForGcp(t *testing.T) {
bundle := mockBundle(config.Development)
bundle.Tagging = tags.ForCloud(&sdkconfig.Config{
Host: "https://123.4.gcp.databricks.com/",
})
bundle.Config.Workspace.CurrentUser.ShortName = "Héllö wörld?!"
err := ProcessTargetMode().Apply(context.Background(), bundle)
require.NoError(t, err)
// Assert that tag normalization took place.
assert.Equal(t, "Hello_world", bundle.Config.Resources.Jobs["job1"].Tags["dev"])
Add development runs (#522) This implements the "development run" functionality that we desire for DABs in the workspace / IDE. ## bundle.yml changes In bundle.yml, there should be a "dev" environment that is marked as `mode: debug`: ``` environments: dev: default: true mode: development # future accepted values might include pull_request, production ``` Setting `mode` to `development` indicates that this environment is used just for running things for development. This results in several changes to deployed assets: * All assets will get '[dev]' in their name and will get a 'dev' tag * All assets will be hidden from the list of assets (future work; e.g. for jobs we would have a special job_type that hides it from the list) * All deployed assets will be ephemeral (future work, we need some form of garbage collection) * Pipelines will be marked as 'development: true' * Jobs can run on development compute through the `--compute` parameter in the CLI * Jobs get their schedule / triggers paused * Jobs get concurrent runs (it's really annoying if your runs get skipped because the last run was still in progress) Other accepted values for `mode` are `default` (which does nothing) and `pull-request` (which is reserved for future use). ## CLI changes To run a single job called "shark_sighting" on existing compute, use the following commands: ``` $ databricks bundle deploy --compute 0617-201942-9yd9g8ix $ databricks bundle run shark_sighting ``` which would deploy and run a job called "[dev] shark_sightings" on the compute provided. Note that `--compute` is not accepted in production environments, so we show an error if `mode: development` is not used. The `run --deploy` command offers a convenient shorthand for the common combination of deploying & running: ``` $ export DATABRICKS_COMPUTE=0617-201942-9yd9g8ix $ bundle run --deploy shark_sightings ``` The `--deploy` addition isn't really essential and I welcome feedback 🤔 I played with the idea of a "debug" or "dev" command but that seemed to only make the option space even broader for users. The above could work well with an IDE or workspace that automatically sets the target compute. One more thing I added is`run --no-wait` can now be used to run something without waiting for it to be completed (useful for IDE-like environments that can display progress themselves). ``` $ bundle run --deploy shark_sightings --no-wait ```
2023-07-12 06:51:54 +00:00
}
func TestProcessTargetModeDefault(t *testing.T) {
bundle := mockBundle("")
m := ProcessTargetMode()
err := m.Apply(context.Background(), bundle)
require.NoError(t, err)
assert.Equal(t, "job1", bundle.Config.Resources.Jobs["job1"].Name)
assert.Equal(t, "pipeline1", bundle.Config.Resources.Pipelines["pipeline1"].Name)
assert.False(t, bundle.Config.Resources.Pipelines["pipeline1"].PipelineSpec.Development)
assert.Equal(t, "servingendpoint1", bundle.Config.Resources.ModelServingEndpoints["servingendpoint1"].Name)
assert.Equal(t, "registeredmodel1", bundle.Config.Resources.RegisteredModels["registeredmodel1"].Name)
}
func TestProcessTargetModeProduction(t *testing.T) {
bundle := mockBundle(config.Production)
err := validateProductionMode(context.Background(), bundle, false)
require.ErrorContains(t, err, "state_path")
bundle.Config.Workspace.StatePath = "/Shared/.bundle/x/y/state"
bundle.Config.Workspace.ArtifactsPath = "/Shared/.bundle/x/y/artifacts"
bundle.Config.Workspace.FilesPath = "/Shared/.bundle/x/y/files"
err = validateProductionMode(context.Background(), bundle, false)
require.ErrorContains(t, err, "production")
permissions := []resources.Permission{
{
Level: "CAN_MANAGE",
UserName: "user@company.com",
Add development runs (#522) This implements the "development run" functionality that we desire for DABs in the workspace / IDE. ## bundle.yml changes In bundle.yml, there should be a "dev" environment that is marked as `mode: debug`: ``` environments: dev: default: true mode: development # future accepted values might include pull_request, production ``` Setting `mode` to `development` indicates that this environment is used just for running things for development. This results in several changes to deployed assets: * All assets will get '[dev]' in their name and will get a 'dev' tag * All assets will be hidden from the list of assets (future work; e.g. for jobs we would have a special job_type that hides it from the list) * All deployed assets will be ephemeral (future work, we need some form of garbage collection) * Pipelines will be marked as 'development: true' * Jobs can run on development compute through the `--compute` parameter in the CLI * Jobs get their schedule / triggers paused * Jobs get concurrent runs (it's really annoying if your runs get skipped because the last run was still in progress) Other accepted values for `mode` are `default` (which does nothing) and `pull-request` (which is reserved for future use). ## CLI changes To run a single job called "shark_sighting" on existing compute, use the following commands: ``` $ databricks bundle deploy --compute 0617-201942-9yd9g8ix $ databricks bundle run shark_sighting ``` which would deploy and run a job called "[dev] shark_sightings" on the compute provided. Note that `--compute` is not accepted in production environments, so we show an error if `mode: development` is not used. The `run --deploy` command offers a convenient shorthand for the common combination of deploying & running: ``` $ export DATABRICKS_COMPUTE=0617-201942-9yd9g8ix $ bundle run --deploy shark_sightings ``` The `--deploy` addition isn't really essential and I welcome feedback 🤔 I played with the idea of a "debug" or "dev" command but that seemed to only make the option space even broader for users. The above could work well with an IDE or workspace that automatically sets the target compute. One more thing I added is`run --no-wait` can now be used to run something without waiting for it to be completed (useful for IDE-like environments that can display progress themselves). ``` $ bundle run --deploy shark_sightings --no-wait ```
2023-07-12 06:51:54 +00:00
},
}
bundle.Config.Resources.Jobs["job1"].Permissions = permissions
bundle.Config.Resources.Jobs["job1"].RunAs = &jobs.JobRunAs{UserName: "user@company.com"}
bundle.Config.Resources.Jobs["job2"].RunAs = &jobs.JobRunAs{UserName: "user@company.com"}
bundle.Config.Resources.Pipelines["pipeline1"].Permissions = permissions
bundle.Config.Resources.Experiments["experiment1"].Permissions = permissions
bundle.Config.Resources.Experiments["experiment2"].Permissions = permissions
bundle.Config.Resources.Models["model1"].Permissions = permissions
bundle.Config.Resources.ModelServingEndpoints["servingendpoint1"].Permissions = permissions
Add development runs (#522) This implements the "development run" functionality that we desire for DABs in the workspace / IDE. ## bundle.yml changes In bundle.yml, there should be a "dev" environment that is marked as `mode: debug`: ``` environments: dev: default: true mode: development # future accepted values might include pull_request, production ``` Setting `mode` to `development` indicates that this environment is used just for running things for development. This results in several changes to deployed assets: * All assets will get '[dev]' in their name and will get a 'dev' tag * All assets will be hidden from the list of assets (future work; e.g. for jobs we would have a special job_type that hides it from the list) * All deployed assets will be ephemeral (future work, we need some form of garbage collection) * Pipelines will be marked as 'development: true' * Jobs can run on development compute through the `--compute` parameter in the CLI * Jobs get their schedule / triggers paused * Jobs get concurrent runs (it's really annoying if your runs get skipped because the last run was still in progress) Other accepted values for `mode` are `default` (which does nothing) and `pull-request` (which is reserved for future use). ## CLI changes To run a single job called "shark_sighting" on existing compute, use the following commands: ``` $ databricks bundle deploy --compute 0617-201942-9yd9g8ix $ databricks bundle run shark_sighting ``` which would deploy and run a job called "[dev] shark_sightings" on the compute provided. Note that `--compute` is not accepted in production environments, so we show an error if `mode: development` is not used. The `run --deploy` command offers a convenient shorthand for the common combination of deploying & running: ``` $ export DATABRICKS_COMPUTE=0617-201942-9yd9g8ix $ bundle run --deploy shark_sightings ``` The `--deploy` addition isn't really essential and I welcome feedback 🤔 I played with the idea of a "debug" or "dev" command but that seemed to only make the option space even broader for users. The above could work well with an IDE or workspace that automatically sets the target compute. One more thing I added is`run --no-wait` can now be used to run something without waiting for it to be completed (useful for IDE-like environments that can display progress themselves). ``` $ bundle run --deploy shark_sightings --no-wait ```
2023-07-12 06:51:54 +00:00
err = validateProductionMode(context.Background(), bundle, false)
Add development runs (#522) This implements the "development run" functionality that we desire for DABs in the workspace / IDE. ## bundle.yml changes In bundle.yml, there should be a "dev" environment that is marked as `mode: debug`: ``` environments: dev: default: true mode: development # future accepted values might include pull_request, production ``` Setting `mode` to `development` indicates that this environment is used just for running things for development. This results in several changes to deployed assets: * All assets will get '[dev]' in their name and will get a 'dev' tag * All assets will be hidden from the list of assets (future work; e.g. for jobs we would have a special job_type that hides it from the list) * All deployed assets will be ephemeral (future work, we need some form of garbage collection) * Pipelines will be marked as 'development: true' * Jobs can run on development compute through the `--compute` parameter in the CLI * Jobs get their schedule / triggers paused * Jobs get concurrent runs (it's really annoying if your runs get skipped because the last run was still in progress) Other accepted values for `mode` are `default` (which does nothing) and `pull-request` (which is reserved for future use). ## CLI changes To run a single job called "shark_sighting" on existing compute, use the following commands: ``` $ databricks bundle deploy --compute 0617-201942-9yd9g8ix $ databricks bundle run shark_sighting ``` which would deploy and run a job called "[dev] shark_sightings" on the compute provided. Note that `--compute` is not accepted in production environments, so we show an error if `mode: development` is not used. The `run --deploy` command offers a convenient shorthand for the common combination of deploying & running: ``` $ export DATABRICKS_COMPUTE=0617-201942-9yd9g8ix $ bundle run --deploy shark_sightings ``` The `--deploy` addition isn't really essential and I welcome feedback 🤔 I played with the idea of a "debug" or "dev" command but that seemed to only make the option space even broader for users. The above could work well with an IDE or workspace that automatically sets the target compute. One more thing I added is`run --no-wait` can now be used to run something without waiting for it to be completed (useful for IDE-like environments that can display progress themselves). ``` $ bundle run --deploy shark_sightings --no-wait ```
2023-07-12 06:51:54 +00:00
require.NoError(t, err)
Add development runs (#522) This implements the "development run" functionality that we desire for DABs in the workspace / IDE. ## bundle.yml changes In bundle.yml, there should be a "dev" environment that is marked as `mode: debug`: ``` environments: dev: default: true mode: development # future accepted values might include pull_request, production ``` Setting `mode` to `development` indicates that this environment is used just for running things for development. This results in several changes to deployed assets: * All assets will get '[dev]' in their name and will get a 'dev' tag * All assets will be hidden from the list of assets (future work; e.g. for jobs we would have a special job_type that hides it from the list) * All deployed assets will be ephemeral (future work, we need some form of garbage collection) * Pipelines will be marked as 'development: true' * Jobs can run on development compute through the `--compute` parameter in the CLI * Jobs get their schedule / triggers paused * Jobs get concurrent runs (it's really annoying if your runs get skipped because the last run was still in progress) Other accepted values for `mode` are `default` (which does nothing) and `pull-request` (which is reserved for future use). ## CLI changes To run a single job called "shark_sighting" on existing compute, use the following commands: ``` $ databricks bundle deploy --compute 0617-201942-9yd9g8ix $ databricks bundle run shark_sighting ``` which would deploy and run a job called "[dev] shark_sightings" on the compute provided. Note that `--compute` is not accepted in production environments, so we show an error if `mode: development` is not used. The `run --deploy` command offers a convenient shorthand for the common combination of deploying & running: ``` $ export DATABRICKS_COMPUTE=0617-201942-9yd9g8ix $ bundle run --deploy shark_sightings ``` The `--deploy` addition isn't really essential and I welcome feedback 🤔 I played with the idea of a "debug" or "dev" command but that seemed to only make the option space even broader for users. The above could work well with an IDE or workspace that automatically sets the target compute. One more thing I added is`run --no-wait` can now be used to run something without waiting for it to be completed (useful for IDE-like environments that can display progress themselves). ``` $ bundle run --deploy shark_sightings --no-wait ```
2023-07-12 06:51:54 +00:00
assert.Equal(t, "job1", bundle.Config.Resources.Jobs["job1"].Name)
assert.Equal(t, "pipeline1", bundle.Config.Resources.Pipelines["pipeline1"].Name)
assert.False(t, bundle.Config.Resources.Pipelines["pipeline1"].PipelineSpec.Development)
assert.Equal(t, "servingendpoint1", bundle.Config.Resources.ModelServingEndpoints["servingendpoint1"].Name)
assert.Equal(t, "registeredmodel1", bundle.Config.Resources.RegisteredModels["registeredmodel1"].Name)
Add development runs (#522) This implements the "development run" functionality that we desire for DABs in the workspace / IDE. ## bundle.yml changes In bundle.yml, there should be a "dev" environment that is marked as `mode: debug`: ``` environments: dev: default: true mode: development # future accepted values might include pull_request, production ``` Setting `mode` to `development` indicates that this environment is used just for running things for development. This results in several changes to deployed assets: * All assets will get '[dev]' in their name and will get a 'dev' tag * All assets will be hidden from the list of assets (future work; e.g. for jobs we would have a special job_type that hides it from the list) * All deployed assets will be ephemeral (future work, we need some form of garbage collection) * Pipelines will be marked as 'development: true' * Jobs can run on development compute through the `--compute` parameter in the CLI * Jobs get their schedule / triggers paused * Jobs get concurrent runs (it's really annoying if your runs get skipped because the last run was still in progress) Other accepted values for `mode` are `default` (which does nothing) and `pull-request` (which is reserved for future use). ## CLI changes To run a single job called "shark_sighting" on existing compute, use the following commands: ``` $ databricks bundle deploy --compute 0617-201942-9yd9g8ix $ databricks bundle run shark_sighting ``` which would deploy and run a job called "[dev] shark_sightings" on the compute provided. Note that `--compute` is not accepted in production environments, so we show an error if `mode: development` is not used. The `run --deploy` command offers a convenient shorthand for the common combination of deploying & running: ``` $ export DATABRICKS_COMPUTE=0617-201942-9yd9g8ix $ bundle run --deploy shark_sightings ``` The `--deploy` addition isn't really essential and I welcome feedback 🤔 I played with the idea of a "debug" or "dev" command but that seemed to only make the option space even broader for users. The above could work well with an IDE or workspace that automatically sets the target compute. One more thing I added is`run --no-wait` can now be used to run something without waiting for it to be completed (useful for IDE-like environments that can display progress themselves). ``` $ bundle run --deploy shark_sightings --no-wait ```
2023-07-12 06:51:54 +00:00
}
func TestProcessTargetModeProductionOkForPrincipal(t *testing.T) {
bundle := mockBundle(config.Production)
// Our target has all kinds of problems when not using service principals ...
err := validateProductionMode(context.Background(), bundle, false)
require.Error(t, err)
// ... but we're much less strict when a principal is used
err = validateProductionMode(context.Background(), bundle, true)
require.NoError(t, err)
}
// Make sure that we have test coverage for all resource types
func TestAllResourcesMocked(t *testing.T) {
bundle := mockBundle(config.Development)
resources := reflect.ValueOf(bundle.Config.Resources)
for i := 0; i < resources.NumField(); i++ {
field := resources.Field(i)
if field.Kind() == reflect.Map {
assert.True(
t,
!field.IsNil() && field.Len() > 0,
"process_target_mode should support '%s' (please add it to process_target_mode.go and extend the test suite)",
resources.Type().Field(i).Name,
)
}
}
}
// Make sure that we at least rename all resources
func TestAllResourcesRenamed(t *testing.T) {
bundle := mockBundle(config.Development)
resources := reflect.ValueOf(bundle.Config.Resources)
m := ProcessTargetMode()
err := m.Apply(context.Background(), bundle)
require.NoError(t, err)
for i := 0; i < resources.NumField(); i++ {
field := resources.Field(i)
if field.Kind() == reflect.Map {
for _, key := range field.MapKeys() {
resource := field.MapIndex(key)
nameField := resource.Elem().FieldByName("Name")
if nameField.IsValid() && nameField.Kind() == reflect.String {
assert.True(
t,
strings.Contains(nameField.String(), "dev"),
"process_target_mode should rename '%s' in '%s'",
key,
resources.Type().Field(i).Name,
)
}
}
}
}
}