databricks-cli/cmd/bundle/deploy.go

62 lines
1.7 KiB
Go
Raw Normal View History

package bundle
import (
Use dynamic configuration model in bundles (#1098) ## Changes This is a fundamental change to how we load and process bundle configuration. We now depend on the configuration being represented as a `dyn.Value`. This representation is functionally equivalent to Go's `any` (it is variadic) and allows us to capture metadata associated with a value, such as where it was defined (e.g. file, line, and column). It also allows us to represent Go's zero values properly (e.g. empty string, integer equal to 0, or boolean false). Using this representation allows us to let the configuration model deviate from the typed structure we have been relying on so far (`config.Root`). We need to deviate from these types when using variables for fields that are not a string themselves. For example, using `${var.num_workers}` for an integer `workers` field was impossible until now (though not implemented in this change). The loader for a `dyn.Value` includes functionality to capture any and all type mismatches between the user-defined configuration and the expected types. These mismatches can be surfaced as validation errors in future PRs. Given that many mutators expect the typed struct to be the source of truth, this change converts between the dynamic representation and the typed representation on mutator entry and exit. Existing mutators can continue to modify the typed representation and these modifications are reflected in the dynamic representation (see `MarkMutatorEntry` and `MarkMutatorExit` in `bundle/config/root.go`). Required changes included in this change: * The existing interpolation package is removed in favor of `libs/dyn/dynvar`. * Functionality to merge job clusters, job tasks, and pipeline clusters are now all broken out into their own mutators. To be implemented later: * Allow variable references for non-string types. * Surface diagnostics about the configuration provided by the user in the validation output. * Some mutators use a resource's configuration file path to resolve related relative paths. These depend on `bundle/config/paths.Path` being set and populated through `ConfigureConfigFilePath`. Instead, they should interact with the dynamically typed configuration directly. Doing this also unlocks being able to differentiate different base paths used within a job (e.g. a task override with a relative path defined in a directory other than the base job). ## Tests * Existing unit tests pass (some have been modified to accommodate) * Integration tests pass
2024-02-16 19:41:58 +00:00
"context"
"github.com/databricks/cli/bundle"
"github.com/databricks/cli/bundle/phases"
"github.com/databricks/cli/cmd/bundle/utils"
"github.com/databricks/cli/cmd/root"
"github.com/databricks/cli/libs/diag"
"github.com/spf13/cobra"
)
func newDeployCommand() *cobra.Command {
cmd := &cobra.Command{
Use: "deploy",
Short: "Deploy bundle",
Args: root.NoArgs,
PreRunE: utils.ConfigureBundleWithVariables,
}
Add validation for Git settings in bundles (#578) ## Changes This checks whether the Git settings are consistent with the actual Git state of a source directory. (This PR adds to https://github.com/databricks/cli/pull/577.) Previously, we would silently let users configure their Git branch to e.g. `main` and deploy with that metadata even if they were actually on a different branch. With these changes, the following config would result in an error when deployed from any other branch than `main`: ``` bundle: name: example workspace: git: branch: main environments: ... ``` > not on the right Git branch: > expected according to configuration: main > actual: my-feature-branch It's not very useful to set the same branch for all environments, though. For development, it's better to just let the CLI auto-detect the right branch. Therefore, it's now possible to set the branch just for a single environment: ``` bundle: name: example 2 environments: development: default: true production: # production can only be deployed from the 'main' branch git: branch: main ``` Adding to that, the `mode: production` option actually checks that users explicitly set the Git branch as seen above. Setting that branch helps avoid mistakes, where someone accidentally deploys to production from the wrong branch. (I could see us offering an escape hatch for that in the future.) # Testing Manual testing to validate the experience and error messages. Automated unit tests. --------- Co-authored-by: Fabian Jakobs <fabian.jakobs@databricks.com>
2023-07-30 12:44:33 +00:00
var force bool
var forceLock bool
var failOnActiveRuns bool
var computeID string
Add validation for Git settings in bundles (#578) ## Changes This checks whether the Git settings are consistent with the actual Git state of a source directory. (This PR adds to https://github.com/databricks/cli/pull/577.) Previously, we would silently let users configure their Git branch to e.g. `main` and deploy with that metadata even if they were actually on a different branch. With these changes, the following config would result in an error when deployed from any other branch than `main`: ``` bundle: name: example workspace: git: branch: main environments: ... ``` > not on the right Git branch: > expected according to configuration: main > actual: my-feature-branch It's not very useful to set the same branch for all environments, though. For development, it's better to just let the CLI auto-detect the right branch. Therefore, it's now possible to set the branch just for a single environment: ``` bundle: name: example 2 environments: development: default: true production: # production can only be deployed from the 'main' branch git: branch: main ``` Adding to that, the `mode: production` option actually checks that users explicitly set the Git branch as seen above. Setting that branch helps avoid mistakes, where someone accidentally deploys to production from the wrong branch. (I could see us offering an escape hatch for that in the future.) # Testing Manual testing to validate the experience and error messages. Automated unit tests. --------- Co-authored-by: Fabian Jakobs <fabian.jakobs@databricks.com>
2023-07-30 12:44:33 +00:00
cmd.Flags().BoolVar(&force, "force", false, "Force-override Git branch validation.")
cmd.Flags().BoolVar(&forceLock, "force-lock", false, "Force acquisition of deployment lock.")
cmd.Flags().BoolVar(&failOnActiveRuns, "fail-on-active-runs", false, "Fail if there are running jobs or pipelines in the deployment.")
cmd.Flags().StringVarP(&computeID, "compute-id", "c", "", "Override compute in the deployment with the given compute ID.")
cmd.RunE = func(cmd *cobra.Command, args []string) error {
Use dynamic configuration model in bundles (#1098) ## Changes This is a fundamental change to how we load and process bundle configuration. We now depend on the configuration being represented as a `dyn.Value`. This representation is functionally equivalent to Go's `any` (it is variadic) and allows us to capture metadata associated with a value, such as where it was defined (e.g. file, line, and column). It also allows us to represent Go's zero values properly (e.g. empty string, integer equal to 0, or boolean false). Using this representation allows us to let the configuration model deviate from the typed structure we have been relying on so far (`config.Root`). We need to deviate from these types when using variables for fields that are not a string themselves. For example, using `${var.num_workers}` for an integer `workers` field was impossible until now (though not implemented in this change). The loader for a `dyn.Value` includes functionality to capture any and all type mismatches between the user-defined configuration and the expected types. These mismatches can be surfaced as validation errors in future PRs. Given that many mutators expect the typed struct to be the source of truth, this change converts between the dynamic representation and the typed representation on mutator entry and exit. Existing mutators can continue to modify the typed representation and these modifications are reflected in the dynamic representation (see `MarkMutatorEntry` and `MarkMutatorExit` in `bundle/config/root.go`). Required changes included in this change: * The existing interpolation package is removed in favor of `libs/dyn/dynvar`. * Functionality to merge job clusters, job tasks, and pipeline clusters are now all broken out into their own mutators. To be implemented later: * Allow variable references for non-string types. * Surface diagnostics about the configuration provided by the user in the validation output. * Some mutators use a resource's configuration file path to resolve related relative paths. These depend on `bundle/config/paths.Path` being set and populated through `ConfigureConfigFilePath`. Instead, they should interact with the dynamically typed configuration directly. Doing this also unlocks being able to differentiate different base paths used within a job (e.g. a task override with a relative path defined in a directory other than the base job). ## Tests * Existing unit tests pass (some have been modified to accommodate) * Integration tests pass
2024-02-16 19:41:58 +00:00
ctx := cmd.Context()
b := bundle.Get(ctx)
bundle.ApplyFunc(ctx, b, func(context.Context, *bundle.Bundle) diag.Diagnostics {
Use dynamic configuration model in bundles (#1098) ## Changes This is a fundamental change to how we load and process bundle configuration. We now depend on the configuration being represented as a `dyn.Value`. This representation is functionally equivalent to Go's `any` (it is variadic) and allows us to capture metadata associated with a value, such as where it was defined (e.g. file, line, and column). It also allows us to represent Go's zero values properly (e.g. empty string, integer equal to 0, or boolean false). Using this representation allows us to let the configuration model deviate from the typed structure we have been relying on so far (`config.Root`). We need to deviate from these types when using variables for fields that are not a string themselves. For example, using `${var.num_workers}` for an integer `workers` field was impossible until now (though not implemented in this change). The loader for a `dyn.Value` includes functionality to capture any and all type mismatches between the user-defined configuration and the expected types. These mismatches can be surfaced as validation errors in future PRs. Given that many mutators expect the typed struct to be the source of truth, this change converts between the dynamic representation and the typed representation on mutator entry and exit. Existing mutators can continue to modify the typed representation and these modifications are reflected in the dynamic representation (see `MarkMutatorEntry` and `MarkMutatorExit` in `bundle/config/root.go`). Required changes included in this change: * The existing interpolation package is removed in favor of `libs/dyn/dynvar`. * Functionality to merge job clusters, job tasks, and pipeline clusters are now all broken out into their own mutators. To be implemented later: * Allow variable references for non-string types. * Surface diagnostics about the configuration provided by the user in the validation output. * Some mutators use a resource's configuration file path to resolve related relative paths. These depend on `bundle/config/paths.Path` being set and populated through `ConfigureConfigFilePath`. Instead, they should interact with the dynamically typed configuration directly. Doing this also unlocks being able to differentiate different base paths used within a job (e.g. a task override with a relative path defined in a directory other than the base job). ## Tests * Existing unit tests pass (some have been modified to accommodate) * Integration tests pass
2024-02-16 19:41:58 +00:00
b.Config.Bundle.Force = force
b.Config.Bundle.Deployment.Lock.Force = forceLock
if cmd.Flag("compute-id").Changed {
b.Config.Bundle.ComputeID = computeID
}
Use dynamic configuration model in bundles (#1098) ## Changes This is a fundamental change to how we load and process bundle configuration. We now depend on the configuration being represented as a `dyn.Value`. This representation is functionally equivalent to Go's `any` (it is variadic) and allows us to capture metadata associated with a value, such as where it was defined (e.g. file, line, and column). It also allows us to represent Go's zero values properly (e.g. empty string, integer equal to 0, or boolean false). Using this representation allows us to let the configuration model deviate from the typed structure we have been relying on so far (`config.Root`). We need to deviate from these types when using variables for fields that are not a string themselves. For example, using `${var.num_workers}` for an integer `workers` field was impossible until now (though not implemented in this change). The loader for a `dyn.Value` includes functionality to capture any and all type mismatches between the user-defined configuration and the expected types. These mismatches can be surfaced as validation errors in future PRs. Given that many mutators expect the typed struct to be the source of truth, this change converts between the dynamic representation and the typed representation on mutator entry and exit. Existing mutators can continue to modify the typed representation and these modifications are reflected in the dynamic representation (see `MarkMutatorEntry` and `MarkMutatorExit` in `bundle/config/root.go`). Required changes included in this change: * The existing interpolation package is removed in favor of `libs/dyn/dynvar`. * Functionality to merge job clusters, job tasks, and pipeline clusters are now all broken out into their own mutators. To be implemented later: * Allow variable references for non-string types. * Surface diagnostics about the configuration provided by the user in the validation output. * Some mutators use a resource's configuration file path to resolve related relative paths. These depend on `bundle/config/paths.Path` being set and populated through `ConfigureConfigFilePath`. Instead, they should interact with the dynamically typed configuration directly. Doing this also unlocks being able to differentiate different base paths used within a job (e.g. a task override with a relative path defined in a directory other than the base job). ## Tests * Existing unit tests pass (some have been modified to accommodate) * Integration tests pass
2024-02-16 19:41:58 +00:00
if cmd.Flag("fail-on-active-runs").Changed {
b.Config.Bundle.Deployment.FailOnActiveRuns = failOnActiveRuns
}
Use dynamic configuration model in bundles (#1098) ## Changes This is a fundamental change to how we load and process bundle configuration. We now depend on the configuration being represented as a `dyn.Value`. This representation is functionally equivalent to Go's `any` (it is variadic) and allows us to capture metadata associated with a value, such as where it was defined (e.g. file, line, and column). It also allows us to represent Go's zero values properly (e.g. empty string, integer equal to 0, or boolean false). Using this representation allows us to let the configuration model deviate from the typed structure we have been relying on so far (`config.Root`). We need to deviate from these types when using variables for fields that are not a string themselves. For example, using `${var.num_workers}` for an integer `workers` field was impossible until now (though not implemented in this change). The loader for a `dyn.Value` includes functionality to capture any and all type mismatches between the user-defined configuration and the expected types. These mismatches can be surfaced as validation errors in future PRs. Given that many mutators expect the typed struct to be the source of truth, this change converts between the dynamic representation and the typed representation on mutator entry and exit. Existing mutators can continue to modify the typed representation and these modifications are reflected in the dynamic representation (see `MarkMutatorEntry` and `MarkMutatorExit` in `bundle/config/root.go`). Required changes included in this change: * The existing interpolation package is removed in favor of `libs/dyn/dynvar`. * Functionality to merge job clusters, job tasks, and pipeline clusters are now all broken out into their own mutators. To be implemented later: * Allow variable references for non-string types. * Surface diagnostics about the configuration provided by the user in the validation output. * Some mutators use a resource's configuration file path to resolve related relative paths. These depend on `bundle/config/paths.Path` being set and populated through `ConfigureConfigFilePath`. Instead, they should interact with the dynamically typed configuration directly. Doing this also unlocks being able to differentiate different base paths used within a job (e.g. a task override with a relative path defined in a directory other than the base job). ## Tests * Existing unit tests pass (some have been modified to accommodate) * Integration tests pass
2024-02-16 19:41:58 +00:00
return nil
})
diags := bundle.Apply(ctx, b, bundle.Seq(
phases.Initialize(),
phases.Build(),
phases.Deploy(),
))
if err := diags.Error(); err != nil {
return err
}
return nil
}
return cmd
}