## Changes
Now it's possible to configure new `app` resource in bundle and point it
to the custom `source_code_path` location where Databricks App code is
defined.
On `databricks bundle deploy` DABs will create an app. All consecutive
`databricks bundle deploy` execution will update an existing app if
there are any updated
On `databricks bundle run <my_app>` DABs will execute app deployment. If
the app is not started yet, it will start the app first.
### Bundle configuration
```
bundle:
name: apps
variables:
my_job_id:
description: "ID of job to run app"
lookup:
job: "My Job"
databricks_name:
description: "Name for app user"
additional_flags:
description: "Additional flags to run command app"
default: ""
my_app_config:
type: complex
description: "Configuration for my Databricks App"
default:
command:
- flask
- --app
- hello
- run
- ${var.additional_flags}
env:
- name: DATABRICKS_NAME
value: ${var.databricks_name}
resources:
apps:
my_app:
name: "anester-app" # required and has to be unique
description: "My App"
source_code_path: ./app # required and points to location of app code
config: ${var.my_app_config}
resources:
- name: "my-job"
description: "A job for app to be able to run"
job:
id: ${var.my_job_id}
permission: "CAN_MANAGE_RUN"
permissions:
- user_name: "foo@bar.com"
level: "CAN_VIEW"
- service_principal_name: "my_sp"
level: "CAN_MANAGE"
targets:
dev:
variables:
databricks_name: "Andrew (from dev)"
additional_flags: --debug
prod:
variables:
databricks_name: "Andrew (from prod)"
```
### Execution
1. `databricks bundle deploy -t dev`
2. `databricks bundle run my_app -t dev`
**If app is started**
```
✓ Getting the status of the app my-app
✓ App is in RUNNING state
✓ Preparing source code for new app deployment.
✓ Deployment is pending
✓ Starting app with command: flask --app hello run --debug
✓ App started successfully
You can access the app at <app-url>
```
**If app is not started**
```
✓ Getting the status of the app my-app
✓ App is in UNAVAILABLE state
✓ Starting the app my-app
✓ App is starting...
....
✓ App is starting...
✓ App is started!
✓ Preparing source code for new app deployment.
✓ Downloading source code from /Workspace/Users/...
✓ Starting app with command: flask --app hello run --debug
✓ App started successfully
You can access the app at <app-url>
```
## Tests
Added unit and config tests + manual test.
```
--- PASS: TestAccDeployBundleWithApp (404.59s)
PASS
coverage: 36.8% of statements in ./...
ok github.com/databricks/cli/internal/bundle 405.035s coverage: 36.8% of statements in ./...
```
## Changes
This updates `mode: production` to allow `root_path` to indicate
uniqueness. Historically, we required `run_as` for this, which isn't
actually very effective for that purpose. `run_as` also had the problem
that it doesn't work for pipelines.
This is a cherry-pick from https://github.com/databricks/cli/pull/1387
---------
Co-authored-by: Pieter Noordhuis <pcnoordhuis@gmail.com>
## Changes
- Enable new linter: testifylint.
- Apply fixes with --fix.
- Fix remaining issues (mostly with aider).
There were 2 cases we --fix did the wrong thing - this seems to a be a
bug in linter: https://github.com/Antonboom/testifylint/issues/210
Nonetheless, I kept that check enabled, it seems useful, just need to be
fixed manually after autofix.
## Tests
Existing tests
## Changes
This PR adds support for UC volumes to DABs.
### Can I use a UC volume managed by DABs in `artifact_path`?
Yes, but we require the volume to exist before being referenced in
`artifact_path`. Otherwise you'll see an error that the volume does not
exist. For this case, this PR also adds a warning if we detect that the
UC volume is defined in the DAB itself, which informs the user to deploy
the UC volume in a separate deployment first before using it in
`artifact_path`.
We cannot create the UC volume and then upload the artifacts to it in
the same `bundle deploy` because `bundle deploy` always uploads the
artifacts to `artifact_path` before materializing any resources defined
in the bundle. Supporting this in a single deployment requires us to
migrate away from our dependency on the Databricks Terraform provider to
manage the CRUD lifecycle of DABs resources.
### Why do we not support `preset.name_prefix` for UC volumes?
UC volumes will not have a `dev_shreyas_goenka` prefix added in `mode:
development`. Configuring `presets.name_prefix` will be a no-op for UC
volumes. We have decided not to support prefixing for UC resources. This
is because:
1. UC provides its own namespace hierarchy that is independent of DABs.
2. Users can always manually use `${workspace.current_user.short_name}`
to configure the prefixes manually.
Customers often manually set up a UC hierarchy for dev and prod,
including a schema or catalog per developer. Thus, it's often
unnecessary for us to add prefixing in `mode: development` by default
for UC resources.
In retrospect, supporting prefixing for UC schemas and registered models
was a mistake and will be removed in a future release of DABs.
## Tests
Unit, integration test, and manually.
### Manual Testing cases:
1. UC volume does not exist:
```
➜ bundle-playground git:(master) ✗ cli bundle deploy
Error: failed to fetch metadata for the UC volume /Volumes/main/caps/my_volume that is configured in the artifact_path: Not Found
```
2. UC Volume does not exist, but is defined in the DAB
```
➜ bundle-playground git:(master) ✗ cli bundle deploy
Error: failed to fetch metadata for the UC volume /Volumes/main/caps/managed_by_dab that is configured in the artifact_path: Not Found
Warning: You might be using a UC volume in your artifact_path that is managed by this bundle but which has not been deployed yet. Please deploy the UC volume in a separate bundle deploy before using it in the artifact_path.
at resources.volumes.bar
in databricks.yml:24:7
```
---------
Co-authored-by: Pieter Noordhuis <pieter.noordhuis@databricks.com>
## Changes
This change adds a preset for source-linked deployments. It is enabled
by default for targets in `development` mode **if** the Databricks CLI
is running from the `/Workspace` directory on DBR. It does not have an
effect when running the CLI anywhere else.
Key highlights:
1. Files in this mode won't be uploaded to workspace
2. Created resources will use references to source files instead of
their workspace copies
## Tests
1. Apply preset unit test covering conditional logic
2. High-level process target mode unit test for testing integration
between mutators
---------
Co-authored-by: Pieter Noordhuis <pieter.noordhuis@databricks.com>
## Changes
This field was special-cased in #1307 because it's not part of the JSON
payload in the SDK struct.
This approach, while pragmatic, meant it didn't show up in the JSON
schema. While debugging an issue with quality monitors in #1900, I
couldn't figure out why I was getting schema errors on this field, or
how it was passed through to the TF representation. This commit removes
the special case and makes it behave like everything else.
## Tests
* Unit tests pass.
* Confirmed that the updated schema failed validation before this
change.
Known issues:
- [ ] _(non-blocking with a command override)_ `apps.Update` requires 2
`name` params (one from path, one from request body)
- [ ] _(non-blocking)_ `lakeview.Create` does not require positional
argument `display_name` anymore because it's not marked as required in
request body
Bumps
[github.com/databricks/databricks-sdk-go](https://github.com/databricks/databricks-sdk-go)
from 0.49.0 to 0.51.0.
---------
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Andrew Nester <andrew.nester@databricks.com>
## Changes
* Provide a more helpful error when using an artifact_path based on
/Volumes
* Allow the use of short_names in /Volumes paths
## Example cases
Example of a valid /Volumes artifact_path:
* `artifact_path:
/Volumes/catalog/schema/${workspace.current_user.short_name}/libs`
Example of an invalid /Volumes path (when using `mode: development`):
* `artifact_path: /Volumes/catalog/schema/libs`
* Resulting error: `artifact_path should contain the current username or
${workspace.current_user.short_name} to ensure uniqueness when using
'mode: development'`
## Changes
This adds configurable transformations based on the transformations
currently seen in `mode: development`.
Example databricks.yml showcasing how some transformations:
```
bundle:
name: my_bundle
targets:
dev:
presets:
prefix: "myprefix_" # prefix all resource names with myprefix_
pipelines_development: true # set development to true by default for pipelines
trigger_pause_status: PAUSED # set pause_status to PAUSED by default for all triggers and schedules
jobs_max_concurrent_runs: 10 # set max_concurrent runs to 10 by default for all jobs
tags:
dev: true
```
## Tests
* Existing process_target_mode tests that were adapted to use this new
code
* Unit tests specific for the new mutator
* Unit tests for config loading and merging
* Manual e2e testing
## Changes
This PR adds support for UC Schemas to DABs. This allows users to define
schemas for tables and other assets their pipelines/workflows create as
part of the DAB, thus managing the life-cycle in the DAB.
The first version has a couple of intentional limitations:
1. The owner of the schema will be the deployment user. Changing the
owner of the schema is not allowed (yet). `run_as` will not be
restricted for DABs containing UC schemas. Let's limit the scope of
run_as to the compute identity used instead of ownership of data assets
like UC schemas.
2. API fields that are present in the update API but not the create API.
For example: enabling predictive optimization is not supported in the
create schema API and thus is not available in DABs at the moment.
## Tests
Manually and integration test. Manually verified the following work:
1. Development mode adds a "dev_" prefix.
2. Modified status is correctly computed in the `bundle summary`
command.
3. Grants work as expected, for assigning privileges.
4. Variable interpolation works for the schema ID.
## Changes
This cherry-picks from #1490 to address an issue that came up in #1511.
The function `dyn.SetByPath` requires intermediate values to be present.
If they are not, it returns an error that it cannot index a map. This is
not an issue on main, where the intermediate maps are always created,
even if they are not present in the dynamic configuration tree. As of
#1511, we'll no longer populate empty maps for empty structs if they are
not explicitly set (i.e., a non-nil pointer). This change writes a bool
pointer to avoid this issue altogether.
## Tests
Unit tests pass.
## Changes
This change adds support for Lakehouse monitoring in bundles.
The associated resource type name is "quality monitor".
## Testing
Unit tests.
---------
Co-authored-by: Pieter Noordhuis <pcnoordhuis@gmail.com>
Co-authored-by: Pieter Noordhuis <pieter.noordhuis@databricks.com>
Co-authored-by: Arpit Jasapara <87999496+arpitjasa-db@users.noreply.github.com>
## Changes
This changes `databricks bundle deploy` so that it skips the lock
acquisition/release step for a `mode: development` target:
* This saves about 2 seconds (measured over 100 runs on a quiet/busy
workspace).
* This helps avoid the `deploy lock acquired by lennart@company.com at
2024-02-28 15:48:38.40603 +0100 CET. Use --force-lock to override` error
* Risk: this may cause deployment conflicts, but since dev mode
deployments are always scoped to a user, that risk should be minimal
Update after discussion:
* This behavior can now be disabled via a setting.
* Docs PR: https://github.com/databricks/docs/pull/15873
## Measurements
### 100 deployments of the "python_default" project to an empty
workspace
_Before this branch:_
p50 time: 11.479 seconds
p90 time: 11.757 seconds
_After this branch:_
p50 time: 9.386 seconds
p90 time: 9.599 seconds
### 100 deployments of the "python_default" project to a busy (staging)
workspace
_Before this branch:_
* p50 time: 13.335 seconds
* p90 time: 15.295 seconds
_After this branch:_
* p50 time: 11.397 seconds
* p90 time: 11.743 seconds
### Typical duration of deployment steps
* Acquiring Deployment Lock: 1.096 seconds
* Deployment Preparations and Operations: 1.477 seconds
* Uploading Artifacts: 1.26 seconds
* Finalizing Deployment: 9.699 seconds
* Releasing Deployment Lock: 1.198 seconds
---------
Co-authored-by: Pieter Noordhuis <pcnoordhuis@gmail.com>
Co-authored-by: Andrew Nester <andrew.nester.dev@gmail.com>
## Changes
This diagnostics type allows us to capture multiple warnings as well as
errors in the return value. This is a preparation for returning
additional warnings from mutators in case we detect non-fatal problems.
* All return statements that previously returned an error now return
`diag.FromErr`
* All return statements that previously returned `fmt.Errorf` now return
`diag.Errorf`
* All `err != nil` checks now use `diags.HasError()` or `diags.Error()`
## Tests
* Existing tests pass.
* I confirmed no call site under `./bundle` or `./cmd/bundle` uses
`errors.Is` on the return value from mutators. This is relevant because
we cannot wrap errors with `%w` when calling `diag.Errorf` (like
`fmt.Errorf`; context in https://github.com/golang/go/issues/47641).
## Changes
This is a fundamental change to how we load and process bundle
configuration. We now depend on the configuration being represented as a
`dyn.Value`. This representation is functionally equivalent to Go's
`any` (it is variadic) and allows us to capture metadata associated with
a value, such as where it was defined (e.g. file, line, and column). It
also allows us to represent Go's zero values properly (e.g. empty
string, integer equal to 0, or boolean false).
Using this representation allows us to let the configuration model
deviate from the typed structure we have been relying on so far
(`config.Root`). We need to deviate from these types when using
variables for fields that are not a string themselves. For example,
using `${var.num_workers}` for an integer `workers` field was impossible
until now (though not implemented in this change).
The loader for a `dyn.Value` includes functionality to capture any and
all type mismatches between the user-defined configuration and the
expected types. These mismatches can be surfaced as validation errors in
future PRs.
Given that many mutators expect the typed struct to be the source of
truth, this change converts between the dynamic representation and the
typed representation on mutator entry and exit. Existing mutators can
continue to modify the typed representation and these modifications are
reflected in the dynamic representation (see `MarkMutatorEntry` and
`MarkMutatorExit` in `bundle/config/root.go`).
Required changes included in this change:
* The existing interpolation package is removed in favor of
`libs/dyn/dynvar`.
* Functionality to merge job clusters, job tasks, and pipeline clusters
are now all broken out into their own mutators.
To be implemented later:
* Allow variable references for non-string types.
* Surface diagnostics about the configuration provided by the user in
the validation output.
* Some mutators use a resource's configuration file path to resolve
related relative paths. These depend on `bundle/config/paths.Path` being
set and populated through `ConfigureConfigFilePath`. Instead, they
should interact with the dynamically typed configuration directly. Doing
this also unlocks being able to differentiate different base paths used
within a job (e.g. a task override with a relative path defined in a
directory other than the base job).
## Tests
* Existing unit tests pass (some have been modified to accommodate)
* Integration tests pass
## Changes
This PR changes the default and `mode: production` recommendation to
target `/Users` for deployment. Previously, we used `/Shared`, but
because of a lack of POSIX-like permissions in WorkspaceFS this meant
that files inside would be readable and writable by other users in the
workspace.
Detailed change:
* `default-python` no longer uses a path that starts with `/Shared`
* `mode: production` no longer requires a path that starts with
`/Shared`
## Related PRs
Docs: https://github.com/databricks/docs/pull/14585
Examples: https://github.com/databricks/bundle-examples/pull/17
## Tests
* Manual tests
* Template unit tests (with an extra check to avoid /Shared)
## Changes
Some test call sites called directly into the mutator's `Apply` function
instead of `bundle.Apply`. Calling into `bundle.Apply` is preferred
because that's where we can run pre/post logic common across all
mutators.
## Tests
Pass.
## Changes
All calls to apply a mutator must go through `bundle.Apply`. This
conflicts with the existing use of the variable `bundle`. This change
un-aliases the variable from the package name by renaming all variables
to `b`.
## Tests
Pass.
## Changes
This PR:
1. Renames `FilesPath` -> `FilePath` and `ArtifactsPath` ->
`ArtifactPath` in the bundle and metadata configuration to make them
consistant with the json tags.
2. Fixes development / production mode error messages to point to
`file_path` and `artifact_path`
## Tests
Existing unit tests. This is a strightforward renaming of the fields.
Partly mitigates #859. It's still not clear to me if there is an actual
use case or if users are trying to use "development" mode jobs for
production, but making this overridable is reasonable.
Beyond this fix I think we could do something in the Jobs schedule UI,
but it would help to better understand the use case (or actual reason of
confusion). I expect we should hint customers to move away from dev mode
rather than unpause.
## Changes
The jobs backend propagates job tags to the underlying cloud provider's
resources. As such, they need to match the constraints a cloud provider
places on tag values. The display name can contain anything. With this
change, we modify the tag value to equal the short name as used in the
name prefix.
Additionally, we leverage tag normalization as introduced in #819 to
make sure characters that aren't accepted are removed before using the
value as a tag value.
This is a new stab at #810 and should completely eliminate this class of
problems.
## Tests
Tests pass.
## Changes
This pull request extends the templating support in preparation of a
new, default template (WIP, https://github.com/databricks/cli/pull/686):
* builtin templates that can be initialized using e.g. `databricks
bundle init default-python`
* builtin templates are embedded into the executable using go's `embed`
functionality, making sure they're co-versioned with the CLI
* new helpers to get the workspace name, current user name, etc. help
craft a complete template
* (not enabled yet) when the user types `databricks bundle init` they
can interactively select the `default-python` template
And makes two tangentially related changes:
* IsServicePrincipal now uses the "users" API rather than the
"principals" API, since the latter is too slow for our purposes.
* mode: prod no longer requires the 'target.prod.git' setting. It's hard
to set that from a template. (Pieter is planning an overhaul of warnings
support; this would be one of the first warnings we show.)
The actual `default-python` template is maintained in a separate PR:
https://github.com/databricks/cli/pull/686
## Tests
Unit tests, manual testing
## Changes
Renamed Environments to Targets in bundle.yml.
The change is backward-compatible and customers can continue to use
`environments` in the time being.
## Tests
Added tests which checks that both `environments` and `targets` sections
in bundle.yml works correctly