## Changes
This adds diagnostics for collaborative (production) deployment
scenarios, including:
- Bob deploys a bundle that is normally deployed by Alice, but this
fails because Bob can't write to `/Users/Alice/.bundle`.
- Charlie deploys a bundle that is normally deployed by Alice, but this
fails because he can't create a new pipeline where Alice would be the
owner.
- Alice deploys a bundle where she didn't list herself as one of the
CAN_MANAGE users in permissions. That can work, but is probably a
mistake.
## Tests
Unit tests, manual testing.
## Changes
We want to encourage a pattern of specifying only a single resource in a
YAML file when the `.(resource-type).yml` extension is used (for
example, `.job.yml`). This convention could allow us to bijectively map
a resource YAML file to its corresponding resource in the Databricks
workspace.
This PR:
1. Emits a recommendation diagnostic when we detect this convention is
being violated. We can promote this to a warning when we want to
encourage this pattern more strongly.
2. Visualises the recommendation diagnostics in the `bundle validate`
command.
**NOTE:** While this PR also shows the recommendation for `.yaml` files,
we do not encourage users to use this extension. We only support it here
since it's part of the YAML standard and some existing users might
already be using `.yaml`.
## Tests
Unit tests and manually. Here's what an example output looks like:
```
Recommendation: define a single job in a file with the .job.yml extension.
at resources.jobs.bar
resources.jobs.foo
in foo.job.yml:13:7
foo.job.yml:5:7
The following resources are defined or configured in this file:
- bar (job)
- foo (job)
```
---------
Co-authored-by: Lennart Kats (databricks) <lennart.kats@databricks.com>
## Changes
Due to platform changes, all libraries, notebooks and etc. paths used in
Databricks must be started with either /Workspace or /Volumes prefix.
This PR makes sure that all bundle paths are correctly prefixed.
Note: this change is a breaking change if user previously configured and
used `/Workspace/Workspace` folder in their workspace file system or
having `/Workspace/${workspace.root_path}...` pattern configured
anywhere in their bundle config
Fixes: #1751
AI:
- [x] Scan DABs config and error out on
`/Workspace/${workspace.root_path}...` pattern usage
## Tests
Added unit tests
---------
Co-authored-by: Pieter Noordhuis <pieter.noordhuis@databricks.com>
## Changes
Default workspace path for resources with a presence in the workspace
tree.
Note: this path is **not** created automatically (yet). We need this
only for dashboards (so far), so can take care of creation if one or
more dashboards are part of a deployment. This saves an API call for
deployments where this is not necessary.
## Tests
Expanded existing tests.
## Changes
This fixes the user-reported panic in `apply_presets.go`. I'm still
unsure how to reproduce this, since the CLI just reports `ob broken_job
is not defined` when I try to use `bundle deploy` with an empty job.
That said — we may as well be defensive here and I see we have lots of
checks for empty job/cluster/etc. settings scattered throughout our code
base so at least we're somewhat consistent.
## Changes
After introducing the `SyncRootPath` field on the bundle (#1694), the
previous `RootPath` became ambiguous. Does it mean the bundle root path
or the sync root path? This PR renames to field to `BundleRootPath` to
remove the ambiguity.
## Tests
n/a
---------
Co-authored-by: shreyas-goenka <88374338+shreyas-goenka@users.noreply.github.com>
I plan to use this in https://github.com/databricks/cli/pull/1780, to
set the line and column numbers as well for the locations.
gopatch file used:
```
@@
var x expression
var y expression
var z expression
@@
-bundletest.SetLocation(x, y, z)
+bundletest.SetLocation(x, y, []dyn.Location{{File: z}})
```
## Changes
Add JobTaskClusterSpec validate mutator. It catches the case when tasks
don't which cluster to use.
For example, we can get this error with minor modifications to
`default-python` template:
```yaml
tasks:
- task_key: python_file_task
spark_python_task:
python_file: ../src/my_project_10/main.py
```
```
% databricks bundle validate
Error: Missing required cluster or environment settings
at resources.jobs.my_project_10_job.tasks[0]
in resources/my_project_10_job.yml:17:11
Task "print_github_stars" requires a cluster or an environment to run.
Specify one of the following fields: job_cluster_key, environment_key, existing_cluster_id, new_cluster.
```
We implicitly rely on "one of" validation, which does not exist. Many
bundle fields can't co-exist, for instance, specifying:
`JobTask.{existing_cluster_id,job_cluster_key}`, `Library.{whl,pypi}`,
`JobTask.{notebook_task,python_wheel_task}`, etc.
## Tests
Unit tests
---------
Co-authored-by: Pieter Noordhuis <pcnoordhuis@gmail.com>
## Summary
Use the friendly name of service principals when shortening their name.
This change is helpful for the prefix in development mode. Instead of
adding a prefix like `[dev 1706906c-c0a2-4c25-9f57-3a7aa3cb8123]`, we'll
prefix like `[dev my_principal]`.
## Changes
This PR aliases and overrides the schema associated with the variables
block in `target` to allow for directly specifying a variable value in
the JSON schema (without an levels of nesting). This is needed because
this direct value is resolved by dynamically parsing the configuration
tree.
ca6332a5a4/bundle/config/root.go (L424)
## Tests
Existing unit tests.
## Changes
We added a custom resolver for the cluster to add filtering for the
cluster source when we list all clusters.
Without the filtering listing could take a very long time (5-10 mins)
which leads to lookup timeouts.
## Tests
Existing unit tests passing
## Changes
Some call sites hold on to the `dyn.Path` provided to them by the
callback. It must therefore never be mutated after the callback returns,
or these mutations leak out into unknown scope.
This change means it is no longer possible for this failure mode to
happen.
## Tests
Unit test.
## Changes
Fixes an `Error: no value assigned to required variable <variable>.`
when the main complex variable definition is defined in one file but
target override is defined in separate file which is included in the
main one.
## Tests
Added regression test
## Changes
Explain the error when the `databricks-pydabs` package is not installed
or the Python environment isn't correctly activated.
Example output:
```
Error: python mutator process failed: ".venv/bin/python3 -m databricks.bundles.build --phase load --input .../input.json --output .../output.json --diagnostics .../diagnostics.json: exit status 1", use --debug to enable logging
.../.venv/bin/python3: Error while finding module specification for 'databricks.bundles.build' (ModuleNotFoundError: No module named 'databricks')
Explanation: 'databricks-pydabs' library is not installed in the Python environment.
If using Python wheels, ensure that 'databricks-pydabs' is included in the dependencies,
and that the wheel is installed in the Python environment:
$ .venv/bin/pip install -e .
If using a virtual environment, ensure it is specified as the venv_path property in databricks.yml,
or activate the environment before running CLI commands:
experimental:
pydabs:
venv_path: .venv
```
## Tests
Unit tests
## Changes
Preserve diagnostics if there are any errors or warnings when
PythonMutator normalizes output. If anything goes wrong during
conversion, diagnostics contain the relevant location and path.
## Tests
Unit tests
## Changes
* Provide a more helpful error when using an artifact_path based on
/Volumes
* Allow the use of short_names in /Volumes paths
## Example cases
Example of a valid /Volumes artifact_path:
* `artifact_path:
/Volumes/catalog/schema/${workspace.current_user.short_name}/libs`
Example of an invalid /Volumes path (when using `mode: development`):
* `artifact_path: /Volumes/catalog/schema/libs`
* Resulting error: `artifact_path should contain the current username or
${workspace.current_user.short_name} to ensure uniqueness when using
'mode: development'`
## Changes
This changes makes sure we ignore CLI version check on development
builds of the CLI.
Before:
```
$ cat databricks.yml | grep cli_version
databricks_cli_version: ">= 0.223.1"
$ cli bundle deploy
Error: Databricks CLI version constraint not satisfied. Required: >= 0.223.1, current: 0.0.0-dev+06b169284737
```
after
```
...
$ cli bundle deploy
...
Warning: Ignoring Databricks CLI version constraint for development build. Required: >= 0.223.1, current: 0.0.0-dev+d52d6f08fcd5
```
## Tests
<!-- How is this tested? -->
## Changes
This field allows a user to configure paths to synchronize to the
workspace.
Allowed values are relative paths to files and directories anchored at
the directory where the field is set. If one or more values traverse up
the directory tree (to an ancestor of the bundle root directory), the
CLI will dynamically determine the root path to use to ensure that the
file tree structure remains intact.
For example, given a `databricks.yml` in `my_bundle` that includes:
```yaml
sync:
paths:
- ../common
- .
```
Then upon synchronization, the workspace will look like:
```
.
├── common
│ └── lib.py
└── my_bundle
├── databricks.yml
└── notebook.py
```
If not set behavior remains identical.
## Tests
* Newly added unit tests for the mutators and under `bundle/tests`.
* Manually confirmed a bundle without this configuration works the same.
* Manually confirmed a bundle with this configuration works.
## Changes
In https://github.com/databricks/cli/pull/1490 we regressed and started
using the development mode prefix for UC schemas regardless of the mode
of the bundle target.
This PR fixes the regression and adds a regression test
## Tests
Failing integration tests pass now.
## Changes
While experimenting with DAB I discovered that requirements libraries
are being ignored.
One thing worth mentioning is that `bundle validate` runs successfully,
but `bundle deploy` fails. This PR only covers the second part.
## Tests
<!-- How is this tested? -->
Added a unit test
## Changes
Make `pydabs/venv_path` optional. When not specified, CLI detects the
Python interpreter using `python.DetectExecutable`, the same way as for
`artifacts`. `python.DetectExecutable` works correctly if a virtual
environment is activated or `python3` is available on PATH through other
means.
Extract the venv detection code from PyDABs into `libs/python/detect`.
This code will be used when we implement the `python/venv_path` section
in `databricks.yml`.
## Tests
Unit tests and manually
---------
Co-authored-by: Pieter Noordhuis <pcnoordhuis@gmail.com>
## Changes
This PR addressed post-merge feedback from
https://github.com/databricks/cli/pull/1673.
## Tests
Unit tests, and manually.
```
Error: experiment undefined-experiment is not defined
at resources.experiments.undefined-experiment
in databricks.yml:11:26
Error: job undefined-job is not defined
at resources.jobs.undefined-job
in databricks.yml:6:19
Error: pipeline undefined-pipeline is not defined
at resources.pipelines.undefined-pipeline
in databricks.yml:14:24
Name: undefined-job
Target: default
Found 3 errors
```
## Changes
This adds configurable transformations based on the transformations
currently seen in `mode: development`.
Example databricks.yml showcasing how some transformations:
```
bundle:
name: my_bundle
targets:
dev:
presets:
prefix: "myprefix_" # prefix all resource names with myprefix_
pipelines_development: true # set development to true by default for pipelines
trigger_pause_status: PAUSED # set pause_status to PAUSED by default for all triggers and schedules
jobs_max_concurrent_runs: 10 # set max_concurrent runs to 10 by default for all jobs
tags:
dev: true
```
## Tests
* Existing process_target_mode tests that were adapted to use this new
code
* Unit tests specific for the new mutator
* Unit tests for config loading and merging
* Manual e2e testing
## Changes
Before this change, the fileset library would take a single root path
and list all files in it. To support an allowlist of paths to list (much
like a Git `pathspec` without patterns; see [pathspec](pathspec)), this
change introduces an optional argument to `fileset.New` where the caller
can specify paths to list. If not specified, this argument defaults to
list `.` (i.e. list all files in the root).
The motivation for this change is that we wish to expose this pattern in
bundles. Users should be able to specify which paths to synchronize
instead of always only synchronizing the bundle root directory.
[pathspec]:
https://git-scm.com/docs/gitglossary#Documentation/gitglossary.txt-aiddefpathspecapathspec
## Tests
New and existing unit tests.
## Changes
Previously for all the libraries referenced in configuration DABs made
sure that there is corresponding artifact section.
But this is not really necessary and flexible, because local libraries
might be built outside of dabs context.
It also created difficult to follow logic in code where we back
referenced libraries to artifacts which was difficult to fllow
This PR does 3 things:
1. Allows all local libraries referenced in DABs config to be uploaded
to remote
2. Simplifies upload and glob references expand logic by doing this in
single place
3. Speed things up by uploading library only once and doing this in
parallel
## Tests
Added unit + integration tests + made sure that change is backward
compatible (no changes in existing tests)
---------
Co-authored-by: Pieter Noordhuis <pieter.noordhuis@databricks.com>
## Changes
Since locations are already tracked in the dynamic value tree, we no
longer need to track it at the resource/artifact level. This PR:
1. Removes use of `paths.Paths`. Uses dyn.Location instead.
2. Refactors the validation of resources not being empty valued to be
generic across all resource types.
## Tests
Existing unit tests.
## Changes
This change enables overriding the default value of job parameters in
target overrides.
This is the same approach we already take for job clusters and job
tasks.
Closes#1620.
## Tests
Mutator unit tests and lightweight end-to-end tests.
## Changes
This PR adds support for UC Schemas to DABs. This allows users to define
schemas for tables and other assets their pipelines/workflows create as
part of the DAB, thus managing the life-cycle in the DAB.
The first version has a couple of intentional limitations:
1. The owner of the schema will be the deployment user. Changing the
owner of the schema is not allowed (yet). `run_as` will not be
restricted for DABs containing UC schemas. Let's limit the scope of
run_as to the compute identity used instead of ownership of data assets
like UC schemas.
2. API fields that are present in the update API but not the create API.
For example: enabling predictive optimization is not supported in the
create schema API and thus is not available in DABs at the moment.
## Tests
Manually and integration test. Manually verified the following work:
1. Development mode adds a "dev_" prefix.
2. Modified status is correctly computed in the `bundle summary`
command.
3. Grants work as expected, for assigning privileges.
4. Variable interpolation works for the schema ID.
## Changes
This PR:
1. Uses dynamic walking (via the `dyn.MapByPattern` func) to validate no
two resources have the same resource key. The allows us to remove this
validation at merge time.
2. Modifies `dyn.Mapping` to always return a sorted slice of pairs. This
makes traversal functions like `dyn.Walk` or `dyn.MapByPattern`
deterministic.
## Tests
Unit tests. Also manually.
## Changes
Some diagnostics can have multiple paths associated with them. For
instance, ensuring that unique resource keys are used across all
resources. This PR extends `diag.Diagnostic` to accept multiple paths.
This PR is symmetrical to
https://github.com/databricks/cli/pull/1610/files
## Tests
Unit tests
## Changes
This PR changes `diag.Diagnostics` to allow including multiple locations
associated with the diagnostic message. The diagnostics that now return
multiple locations with this PR are:
1. Warning for unknown keys in config.
2. Use of experimental.run_as
3. Accidental sync.exludes that exclude all files.
## Tests
Existing unit tests pass. New unit test case to assert on error message
when multiple locations are included.
Example output:
```
➜ bundle-playground-2 ~/cli2/cli/cli bundle validate
Warning: You are using the legacy mode of run_as. The support for this mode is experimental and might be removed in a future release of the CLI. In order to run the DLT pipelines in your DAB as the run_as user this mode changes the owners of the pipelines to the run_as identity, which requires the user deploying the bundle to be a workspace admin, and also a Metastore admin if the pipeline target is in UC.
at experimental.use_legacy_run_as
in resources.yml:10:22
databricks.yml:13:22
Name: fix run_if
Target: default
Workspace:
User: shreyas.goenka@databricks.com
Path: /Users/shreyas.goenka@databricks.com/.bundle/fix run_if/default
Found 1 warning
```
## Changes
By default, construct a read/write instance. If constructed in read-only
mode, the underlying filer is wrapped in a readahead cache.
## Tests
* Filer integration tests pass.
* Manual test that caching is enabled when running on WSFS.