## Changes
Now it's possible to specify glob pattern in pipeline libraries section
and DAB will add all matched files as libraries
```
pipelines:
dummy:
name: " DLT with Python files"
target: "dlt_python_files"
libraries:
- file:
path: ./*.py
```
## Tests
Added unit test
## Changes
***Note: this PR relies on sync.include functionality from here:
https://github.com/databricks/cli/pull/671***
Added transformation mutator for Python wheel task for them to work on
DBR <13.1
Using wheels upload to Workspace file system as cluster libraries is not
supported in DBR < 13.1
In order to make Python wheel work correctly on DBR < 13.1 we do the
following:
1. Build and upload python wheel as usual
2. Transform python wheel task into special notebook task which does the
following
a. Installs all necessary wheels with %pip magic
b. Executes defined entry point with all provided parameters
3. Upload this notebook file to workspace file system
4. Deploy transformed job task
This is also beneficial for executing on existing clusters because this
notebook always reinstall wheels so if there are any changes to the
wheel package, they are correctly picked up
## Tests
bundle.yml
```yaml
bundle:
name: wheel-task
workspace:
host: ****
resources:
jobs:
test_job:
name: "[${bundle.environment}] My Wheel Job"
tasks:
- task_key: TestTask
existing_cluster_id: "***"
python_wheel_task:
package_name: "my_test_code"
entry_point: "run"
parameters: ["first argument","first value","second argument","second value"]
libraries:
- whl: ./dist/*.whl
```
Output
```
andrew.nester@HFW9Y94129 wheel % databricks bundle run test_job
Run URL: ***
2023-08-03 15:58:04 "[default] My Wheel Job" TERMINATED SUCCESS
Output:
=======
Task TestTask:
Hello from my func
Got arguments v1:
['python', 'first argument', 'first value', 'second argument', 'second value']
```
## Changes
Added run_as section for bundle configuration.
This section allows to define an user name or service principal which
will be applied as an execution identity for jobs and DLT pipelines. In
the case of DLT, identity defined in `run_as` will be assigned
`IS_OWNER` permission on this pipeline.
## Tests
Added unit tests for configuration.
Also ran deploy for the following bundle configuration
```
bundle:
name: "run_as"
run_as:
# service_principal_name: "f7263fcc-56d0-4981-8baf-c2a45296690b"
user_name: "lennart.kats@databricks.com"
resources:
pipelines:
andrew_pipeline:
name: "Andrew Nester pipeline"
libraries:
- notebook:
path: ./test.py
jobs:
job_one:
name: Job One
tasks:
- task_key: "task"
new_cluster:
num_workers: 1
spark_version: 13.2.x-snapshot-scala2.12
node_type_id: i3.xlarge
runtime_engine: PHOTON
notebook_task:
notebook_path: "./test.py"
```
## Changes
Renamed Environments to Targets in bundle.yml.
The change is backward-compatible and customers can continue to use
`environments` in the time being.
## Tests
Added tests which checks that both `environments` and `targets` sections
in bundle.yml works correctly
## Changes
This checks whether the Git settings are consistent with the actual Git
state of a source directory.
(This PR adds to https://github.com/databricks/cli/pull/577.)
Previously, we would silently let users configure their Git branch to
e.g. `main` and deploy with that metadata even if they were actually on
a different branch.
With these changes, the following config would result in an error when
deployed from any other branch than `main`:
```
bundle:
name: example
workspace:
git:
branch: main
environments:
...
```
> not on the right Git branch:
> expected according to configuration: main
> actual: my-feature-branch
It's not very useful to set the same branch for all environments,
though. For development, it's better to just let the CLI auto-detect the
right branch. Therefore, it's now possible to set the branch just for a
single environment:
```
bundle:
name: example 2
environments:
development:
default: true
production:
# production can only be deployed from the 'main' branch
git:
branch: main
```
Adding to that, the `mode: production` option actually checks that users
explicitly set the Git branch as seen above. Setting that branch helps
avoid mistakes, where someone accidentally deploys to production from
the wrong branch. (I could see us offering an escape hatch for that in
the future.)
# Testing
Manual testing to validate the experience and error messages. Automated
unit tests.
---------
Co-authored-by: Fabian Jakobs <fabian.jakobs@databricks.com>
## Changes
Added support for artifacts building for bundles.
Now it allows to specify `artifacts` block in bundle.yml and define a
resource (at the moment Python wheel) to be build and uploaded during
`bundle deploy`
Built artifact will be automatically attached to corresponding job task
or pipeline where it's used as a library
Follow-ups:
1. If artifact is used in job or pipeline, but not found in the config,
try to infer and build it anyway
2. If build command is not provided for Python wheel artifact, infer it
This implements the "development run" functionality that we desire for DABs in the workspace / IDE.
## bundle.yml changes
In bundle.yml, there should be a "dev" environment that is marked as
`mode: debug`:
```
environments:
dev:
default: true
mode: development # future accepted values might include pull_request, production
```
Setting `mode` to `development` indicates that this environment is used
just for running things for development. This results in several changes
to deployed assets:
* All assets will get '[dev]' in their name and will get a 'dev' tag
* All assets will be hidden from the list of assets (future work; e.g.
for jobs we would have a special job_type that hides it from the list)
* All deployed assets will be ephemeral (future work, we need some form
of garbage collection)
* Pipelines will be marked as 'development: true'
* Jobs can run on development compute through the `--compute` parameter
in the CLI
* Jobs get their schedule / triggers paused
* Jobs get concurrent runs (it's really annoying if your runs get
skipped because the last run was still in progress)
Other accepted values for `mode` are `default` (which does nothing) and
`pull-request` (which is reserved for future use).
## CLI changes
To run a single job called "shark_sighting" on existing compute, use the
following commands:
```
$ databricks bundle deploy --compute 0617-201942-9yd9g8ix
$ databricks bundle run shark_sighting
```
which would deploy and run a job called "[dev] shark_sightings" on the
compute provided. Note that `--compute` is not accepted in production
environments, so we show an error if `mode: development` is not used.
The `run --deploy` command offers a convenient shorthand for the common
combination of deploying & running:
```
$ export DATABRICKS_COMPUTE=0617-201942-9yd9g8ix
$ bundle run --deploy shark_sightings
```
The `--deploy` addition isn't really essential and I welcome feedback 🤔
I played with the idea of a "debug" or "dev" command but that seemed to
only make the option space even broader for users. The above could work
well with an IDE or workspace that automatically sets the target
compute.
One more thing I added is`run --no-wait` can now be used to run
something without waiting for it to be completed (useful for IDE-like
environments that can display progress themselves).
```
$ bundle run --deploy shark_sightings --no-wait
```
## Changes
Adds the following steps to the destroy phase:
1. interpolate
2. write
Resolves#518
## Tests
Tested manually due there not being an examples for tests to use.
## Changes
Added support for `bundle.Seq`, simplified `Mutator.Apply` interface by
removing list of mutators from return values/
## Tests
1. Ran `cli bundle deploy` and interrupted it with Cmd + C mid execution
so lock is not released
2. Ran `cli bundle deploy` top make sure that CLI is not trying to
release lock when it fail to acquire it
```
andrew.nester@HFW9Y94129 multiples-tasks % cli bundle deploy
Starting upload of bundle files
Uploaded bundle files at /Users/andrew.nester@databricks.com/.bundle/simple-task/development/files!
^C
andrew.nester@HFW9Y94129 multiples-tasks % cli bundle deploy
Error: deploy lock acquired by andrew.nester@databricks.com at 2023-05-24 12:10:23.050343 +0200 CEST. Use --force to override
```
## Changes
Rename all instances of "bricks" to "databricks".
## Tests
* Confirmed the goreleaser build works, uses the correct new binary
name, and produces the right archives.
* Help output is confirmed to be correct.
* Output of `git grep -w bricks` is minimal with a couple changes
remaining for after the repository rename.
## Changes
Added `DeferredMutator` and `bundle.Defer` function which allows to
always execute some mutators either in the end of execution chain or
after error occurs in the middle of execution chain.
Usage as follows:
```
deferredMutator := bundle.Defer([]bundle.Mutator{
lock.Acquire()
transform.DoSomething(),
//...
}, []bundle.Mutator{
lock.Release(),
})
```
In such case `lock.Release()` will always be executed: either when all
operations above succeed or when any of them fails
## Tests
Before the change
```
andrew.nester@HFW9Y94129 multiples-tasks % bricks bundle deploy
Starting upload of bundle files
Uploaded bundle files at /Users/andrew.nester@databricks.com/.bundle/simple-task/development/files!
Error: terraform not initialized
andrew.nester@HFW9Y94129 multiples-tasks % bricks bundle deploy
Error: deploy lock acquired by andrew.nester@databricks.com at 2023-05-10 16:41:22.902659 +0200 CEST. Use --force to override
```
After the change
```
andrew.nester@HFW9Y94129 multiples-tasks % bricks bundle deploy
Starting upload of bundle files
Uploaded bundle files at /Users/andrew.nester@databricks.com/.bundle/simple-task/development/files!
Error: terraform not initialized
andrew.nester@HFW9Y94129 multiples-tasks % bricks bundle deploy
Starting upload of bundle files
Uploaded bundle files at /Users/andrew.nester@databricks.com/.bundle/simple-task/development/files!
Error: terraform not initialized
```
## Changes
This PR now allows you to define variables in the bundle config and set
them in three ways
1. command line args
2. process environment variable
3. in the bundle config itself
## Tests
manually, unit, and black box tests
---------
Co-authored-by: Miles Yucht <miles@databricks.com>
## Changes
This change also swaps the order of mutators such that interpolation
happens before path translation. This means that is is possible to use
variables (e.g. `${bundle.environment}`) in notebook or file paths.
## Tests
New tests pass and verified manually.
## Changes
Pull state before deploying and push state after deploying.
Note: the run command was missing mutators to initialize Terraform. This
is necessary if the cache directory is removed between running "deploy"
and "run" (which is valid now that we synchronize state).
## Tests
Manually.
Add configuration:
```
bundle:
lock:
enabled: true
force: false
```
The force field can be set by passing the `--force` argument to `bricks
bundle deploy`. Doing so means the deployment lock is acquired even if
it is currently held. This should only be used in exceptional cases
(e.g. a previous deployment has failed to release the lock).
1. Perform file synchronization on deploy
2. Update notebook file path translation logic to point to the
synchronization target rather than treating the notebook as an artifact
and uploading it separately.
The workspace root path is a base path for bundle storage. If not
specified, it defaults to `~/.bundle/name/environment`. This default, or
other paths starting with `~` are expanded to the current user's home
directory. The configuration also includes fields for the files path,
artifacts path, and state path. By default, these are nested under the
root path, but can be overridden if needed.
Users can opt out and use the system-installed version with the
following configuration:
```
bundle:
terraform:
exec_path: terraform
```
This will find the binary in $PATH and replace it with the found value.
If this is not set, the initialize phase will install Terraform in the
bundle's cache directory.